

Preface
With	ever-rising	adoption	of	Cloud	technologies	and	infrastructure	SaaS
products,	as	well	as	always	the	constantly	sizes	of	infrastructures	the	need,
to	manage	it	all	in	the	form	of	code	becomes	more	and	more	apparent.
Cloud	providers	such	as	Amazon	Web	Services	have	dozens	of	services
and	all	of	them	require	secure,	re-usable	and	predictable	configuration.
Terraform,	the	primary	tool	for	this	job,	appeared	in	2014	and	quickly
gained	popularity	among	system	administrators	and	software	developers.
Since	the	first	release,	Terraform	has	achieved	a	lot	of	traction.	It	became
the	new	de	facto	tool	for	managing	the	cloud	environments.	Terraform	is
also	a	tool	that	is	quite	new,	that	is	changing	with	every	release	and	that
requires	a	new	mindset	and	new	practices	from	teams	that	adopt	it.

In	this	book	you	will	learn	how	Terraform	works	and	how	to	use	it,	with
many	examples	of	real-life	applications	of	it.	You	will	explore	modern
approaches	to	managing	the	infrastructure,	such	as	Infrastructure	as	Code
and	Immutable	Infrastructure.	You	will	also	learn	many	new	small	utilities
that	either	improve	the	experience	of	working	with	Terraform	or	cover	the
layers	that	Terraform	is	not	supposed	to	manage.	By	the	end	of	this	book
not	only	will	you	now	how	to	use	Terraform,	but	you	will	be	in	an	expert
in	treating	your	whole	Infrastructure	as	Code,	with	Terraform	being	the
core	of	this	procedure.

What	this	book	covers
Chapter	1,	Infrastructure	Automation,	covers	infrastructure	automation	in
general,	why	is	it	needed	at	all	(with	a	list	of	the	main	reasons	to	do	it)	and
which	tools	exist	to	solve	this	problem.	By	the	end	of	this	chapter	you	will
know	which	problem	Terraform	solves	and	why	it	is	the	best	tool	for
particular	infrastructure	automation	tasks.

Chapter	2,	Deploying	First	Server,	walks	through	all	the	necessary	steps	to
install	Terraform,	gives	a	short	overview	of	AWS	and	EC2,	and	explain	in
detail	how	to	create	your	very	first	EC2	instance	with	Terraform.

Chapter	3,	Resource	Dependencies	and	Modules,	explains	one	of	most
important	features	of	Terraform:	dependency	graph.	You	will	figure	out
how	dependencies	work	and	see	it	in	practice	by	extending	the	template
from	previous	chapter.	At	the	moment	we	find	out	our	template	is	too	big,
we	will	use	Terraform	modules	to	DRY	our	code	and	also	use	more
advanced	dependency	features.

Chapter	4,	Storing	and	Supplying	Configuration,	teaches	how	to	make
Terraform	templates	more	configurable.	You	will	see	all	the	possible	ways
to	supply	data	to	Terraform	templates,	to	basic	variables	to	using	any
external	data	source.

Chapter	5,	Connecting	with	Other	Tools,	talks	about	how	you	can	connect
Terraform	templates	to	external	tools.	It	shows	how	to	combine	Terraform
and	Ansible,	Puppet,	or	Chef,	how	to	provision	servers,	and	how	to	run
Inspec	tests	against	them.

Chapter	6,	Scaling	and	Updating	Infrastructure,	dives	deep	into	managing
existing	infrastructures	with	Terraform.	It	gives	an	overview	of	the	various
ways	to	perform	updates	with	Terraform	and	explains	what	Immutable
Infrastructure	is	and	how	to	use	it	with	Terraform.	It	gives	a	full	example

of	performing	both	rolling	updates	and	blue-green	deployments,	as	well	as
tricks	on	running	smaller	updates.

Chapter	7,	Collaborative	Infrastructure,	provides	best	practices	of	using
Terraform	in	a	team.	It	shows	how	to	refactor	and	split	Terraform
templates	into	remote	modules,	how	to	organize	your	code	to	be	re-usable,
and	how	to	handle	sensitive	data	inside	Terraform	templates.	It	also
teaches	how	to	do	full	Continuous	Integration	of	a	Terraform-based
infrastructure.

Chapter	8,	Future	of	Terraform,	speculates	on	the	future	of	Terraform.	It
also	recaps	everything	learned	so	far	and	gives	some	extra	thoughts	and
hints	on	topics	that	were	too	small	too	deserve	a	separate	chapter.

What	you	need	for	this	book
This	book	assumes	a	basic	level	of	understanding	the	Linux	operating
system.	The	book	will	go	through	configuring	numerous	AWS	resources.
Being	familiar	with	AWS	is	a	plus,	but	is	not	required,	as	all	required
services	will	be	explained.	Usage	of	some	cloud	services	in	this	book	will
require	you	to	spend	a	dollar	or	two	on	them.	Although	the	book	assumes
Linux	as	the	primary	workstation	operating	system,	all	of	the	content
applies	to	MacOS	and	most	of	it	will	work	the	same	way	on	Windows	as
well.

Internet	connectivity	is	required	to	install	the	necessary	tools,	including
Terraform.	It	is	also	required	to	perform	any	Terraform	operations.

Who	this	book	is	for
This	book	is	essentially	intended	to	both	software	developers	and	system
administrators,	as	well	as	specialists	who	have	knowledge	of	both	areas:
system	reliability	engineers,	DevOps	engineers,	cloud	architects	and	so	on.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between
different	kinds	of	information.	Here	are	some	examples	of	these	styles	and
an	explanation	of	their	meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file
extensions,	pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are
shown	as	follows:	"For	some	reason,	instead	of	using	DNS	server,	you
want	to	hardcode	the	IP	address	of	this	box	to	the	/etc/hosts	file	with	a
domain	name	repository.internal."

A	block	of	code	is	set	as	follows:

host	{	'repository.internal':

		ip	=>	'192.168.0.5',

}

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,
the	relevant	lines	or	items	are	set	in	bold:

resource	"null_resource"	"app_server_provisioner"	{

		triggers	{

				server_id	=	"${join(",",	aws_instance.app-server.*.id)}"

		}

		connection	{

				user	=	"centos"

				host	=	"${element(aws_instance.app-server.*.public_ip,	count.index)}"

		}

		provisioner	"file"	{

				source	=	"${path.module}/setup.pp"

				destination	=	"/tmp/setup.pp"

		}

Any	command-line	input	or	output	is	written	as	follows:

$>	curl	-O	https://releases.hashicorp.com/terraform/0.8.2/terraform_0.8.2_linux_amd64.zip

$>	sudo	unzip	terraform_0.8.2_linux_amd64.zip	-d	/usr/local/bin/

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see
on	the	screen,	for	example,	in	menus	or	dialog	boxes,	appear	in	the	text
like	this:	"Click	on	Launch	Instance."

Warnings	or	important	notes	appear	in	a	box	like	this.

Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you
think	about	this	book-what	you	liked	or	disliked.	Reader	feedback	is
important	for	us	as	it	helps	us	develop	titles	that	you	will	really	get	the
most	out	of.	To	send	us	general	feedback,	simply	e-mail
feedback@packtpub.com,	and	mention	the	book's	title	in	the	subject	of	your
message.	If	there	is	a	topic	that	you	have	expertise	in	and	you	are
interested	in	either	writing	or	contributing	to	a	book,	see	our	author	guide
at	www.packtpub.com/authors.

http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of
things	to	help	you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	for	this	book	from	your	account
at	http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can
visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed
directly	to	you.

You	can	download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	to	our	website	using	your	e-mail	address	and
password.

2.	 Hover	the	mouse	pointer	on	the	SUPPORT	tab	at	the	top.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	the	name	of	the	book	in	the	Search	box.

5.	 Select	the	book	for	which	you're	looking	to	download	the	code
files.

6.	 Choose	from	the	drop-down	menu	where	you	purchased	this	book
from.

7.	 Click	on	Code	Download.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract
the	folder	using	the	latest	version	of:

WinRAR	/	7-Zip	for	Windows

Zipeg	/	iZip	/	UnRarX	for	Mac

7-Zip	/	PeaZip	for	Linux

http://www.packtpub.com
http://www.packtpub.com/support

The	code	bundle	for	the	book	is	also	hosted	on	GitHub	at	https://github.co
m/PacktPublishing/Getting-Started-with-Terraform-Second-Edition.	We	also
have	other	code	bundles	from	our	rich	catalog	of	books	and	videos
available	at	https://github.com/PacktPublishing/.	Check	them	out!

https://github.com/PacktPublishing/Getting-Started-with-Terraform-Second-Edition
https://github.com/PacktPublishing/

Downloading	the	color	images
of	this	book
We	also	provide	you	with	a	PDF	file	that	has	color	images	of	the
screenshots/diagrams	used	in	this	book.	The	color	images	will	help	you
better	understand	the	changes	in	the	output.	You	can	download	this	file
from	https://www.packtpub.com/sites/default/files/downloads/GettingStartedwi
thTerraformSecondEdition_ColorImages.pdf.

https://www.packtpub.com/sites/default/files/downloads/GettingStartedwithTerraformSecondEdition_ColorImages.pdf

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,
mistakes	do	happen.	If	you	find	a	mistake	in	one	of	our	books-maybe	a
mistake	in	the	text	or	the	code-we	would	be	grateful	if	you	could	report
this	to	us.	By	doing	so,	you	can	save	other	readers	from	frustration	and
help	us	improve	subsequent	versions	of	this	book.	If	you	find	any	errata,
please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and
entering	the	details	of	your	errata.	Once	your	errata	are	verified,	your
submission	will	be	accepted	and	the	errata	will	be	uploaded	to	our	website
or	added	to	any	list	of	existing	errata	under	the	Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to	https://www.packtpub.com/boo
ks/content/support	and	enter	the	name	of	the	book	in	the	search	field.	The
required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem
across	all	media.	At	Packt,	we	take	the	protection	of	our	copyright	and
licenses	very	seriously.	If	you	come	across	any	illegal	copies	of	our	works
in	any	form	on	the	Internet,	please	provide	us	with	the	location	address	or
website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	copyright@packtpub.com	with	a	link	to	the	suspected
pirated	material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring
you	valuable	content.

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
questions@packtpub.com,	and	we	will	do	our	best	to	address	the	problem.

Infrastructure	Automation
Before	starting	to	learn	Terraform,	you	first	need	to	learn	certain	concepts
in	the	modern	infrastructure.	To	be	able	to	use	the	new	tool,	one	needs	to
understand	what	problem	it	solves.	In	order	to	do	it,	this	chapter	will	cover
the	following	topics:

Learning	what	Infrastructure	as	Code	is	and	why	it	is	needed

Understanding	the	benefits	of	a	declarative	approach	to
configuration	management

Explaining	the	missing	points	of	configuration	management	tools

Laying	out	requirements	for	high-level	infrastructure	automation

Taking	a	quick	look	at	the	main	tools	in	order	to	provision
infrastructure

The	short	overview	and	history	of	Terraform

What	you	will	learn	in	this	book

What	is	Infrastructure	as	Code
and	why	is	it	needed?
The	amount	of	servers	used	by	almost	any	project	is	growing	rapidly
mostly	due	to	increasing	adoption	of	cloud	technologies.	As	a	result,
traditional	ways	of	managing	IT	infrastructure	become	less	and	less
relevant.

The	manual	approach	fits	well	for	a	farm	of	a	dozen,	perhaps	even	a
couple	of	dozen	of	servers.	But	when	we're	talking	about	hundreds	of
them,	doing	anything	by	hand	is	definitely	not	going	to	play	out	well.

It's	not	only	about	servers,	of	course.	Every	cloud	provider	gives	extra
services	on	top,	be	it	a	virtual	networking	service,	object	storage,	or	a
monitoring	solution,	which	you	don't	need	to	maintain	yourself.	These
services	function	that	a	Software	as	a	Service	(SaaS).	And	actually,	we
should	treat	various	SaaS	products	as	part	of	our	infrastructure	as	well.	If
you	use	New	Relic	for	monitoring	purposes,	then	it	is	your	infrastructure
too,	with	the	difference	that	you	don't	need	to	manage	servers	for	it
yourself.	But	how	you	use	it	and	whether	you	use	it	correctly	is	up	to	you.

No	surprises,	companies	of	any	size,	from	small	start-ups	to	huge
enterprises,	are	adopting	new	techniques	and	tools	to	manage	and
automate	their	infrastructures.	These	techniques	eventually	got	a	new
name:	Infrastructure	as	Code	(IaC).

Dated	something	2009,	the	Infrastructure	as	Code	term	is	all	about
approaching	your	IT-infrastructure	tasks	the	same	way	you	develop
software.	This	includes	the	things	similar	to	the	following:

Heavy	use	of	source	control	to	store	all	infrastructure-related	code

Collaboration	on	this	code	in	the	same	fashion	as	applications	are
developed

Using	unit	and	integration	testing	and	even	applying	Test-driven
development	to	infrastructure	code

Introducing	continuous	integration	and	continuous	delivery	to	test
and	release	infrastructure	code

Infrastructure	as	Code	is	a	foundation	for	DevOps	culture	because	both
operations	and	developers	approach	their	work	in	the	same	way,	and	by
following	the	principles	laid	out	before,	they	already	have	some	common
ground.

This	is	not	to	say	that	if	your	infrastructure	is	treated	as	code,	then	the
border	between	development	and	operations	becomes	so	blurry	that	the
whole	existence	of	this	separation	can	become	eventually	quite
questionable.

Of	course,	the	introduction	of	Infrastructure	as	Code	requires	new	kinds	of
tools.

Declarative	versus	procedural
tools	for	Infrastructure	as	Code
What	is	infrastructure	code	specifically?	It	depends	highly	on	your
particular	infrastructure	setup.

In	the	simplest	case,	it	might	be	just	a	bunch	of	shell	scripts	and
component-specific	configuration	files	(Nginx	configuration,	cron	jobs,
and	so	on)	stored	in	source	control.	Inside	these	shell	scripts,	you	specify
exact	steps	computer	needs	to	take	to	achieve	the	state	you	need:

1.	 Copy	this	file	to	that	folder.
2.	 Replace	all	occurrences	of	ADDRESS	with	mysite.com.
3.	 Restart	the	Nginx	service.
4.	 Send	an	e-mail	about	successful	deployment.

This	is	what	we	call	procedural	programming.	It's	not	bad.	For	example,
build	steps	of	Continuous	Integration	tools	such	as	Jenkins	that	are	a
perfect	fit	for	a	procedural	approach—after	all,	the	sequence	of	command
is	exactly	what	you	need	in	this	case.

However,	you	can	only	go	far	with	shell	scripts	when	it	comes	to
configuring	servers	and	higher-level	pieces.	The	more	common	and
mature	approach	these	days	is	to	use	tools	that	provide	a	declarative,
rather	than	a	procedural,	way	to	define	your	infrastructure.	With
declarative	definitions,	you	don't	need	to	think	how	to	do	something;	you
only	write	what	should	be	there.

Perhaps	the	main	benefit	of	it	is	that	rerunning	a	declarative	definition	will
never	do	the	same	job	twice,	whereas	executing	the	same	shell	script	will

http://mysite.com/

most	likely	break	something	on	the	second	run.	The	proper	configuration
management	tool	will	ensure	that	the	server	is	in	the	exactly	same	state	as
defined	in	your	code.	This	property	of	modern	configuration	and
provisioning	tools	is	named	idempotency.

Let's	look	at	an	example.	Let's	say	that	you	have	a	box	in	your	network
that	hosts	a	packages	repository.	For	some	reason,	instead	of	using	DNS
server,	you	want	to	hardcode	the	IP	address	of	this	box	to	the	/etc/hosts
file	with	the	domain	name	repository.internal.

In	Unix-like	systems,	the	/etc/hosts	file	contains	a	local	text
database	of	DNS	records.	The	system	tries	to	resolve	the
DNS	name	by	looking	at	this	file	first,	and	asking	DNS-
server	only	after.

Not	a	complex	task	to	do,	given	that	you	only	need	to	add	a	new	line	to	the
/etc/hosts	file.	To	achieve	this,	you	could	have	a	script	like	the	following:

echo	192.168.0.5	repository.internal	>>	/etc/hosts/hosts

Running	it	once	will	do	the	job:	required	entry	will	be	added	to	the	end	of
the	/etc/hosts	file.	But	what	will	happen	if	you	execute	it	again?	You
guessed	right:	exactly	the	same	line	will	be	appended	again.	And,	even
worse,	what	if	the	IP	address	of	the	repository	box	will	changes?	Then,	if
you	execute	your	script,	you	will	end	up	with	two	different	host	entries	for
the	same	domain	name.

You	can	ensure	idempotency	yourself	inside	the	script	with	the	high	usage
of	conditional	checks.	But	why	reinvent	the	wheel	when	there	is	already	a
tool	to	do	exactly	this	job?	It	would	be	so	much	better	to	just	define	the
end	result	without	composing	a	sequence	of	commands	to	achieve	this.

And	that	is	exactly	what	configuration	management	tools	such	as	Puppet
and	Chef	do	by	providing	you	with	a	special	Domain	Specific	Language
(DSL)	to	define	the	desired	state	of	the	machine.	The	certain	downside	is
the	necessity	to	learn	a	new	DSL:	a	special	small	language	focused	on

solving	one	particular	task.	It's	not	a	complete	programming	language,
neither	does	it	need	to	be;	in	this	case,	its	only	job	is	to	describe	the	state
of	your	server.

Let's	look	at	how	the	same	task	could	be	done	with	the	help	of	a	Puppet
manifest:

host	{	'repository.internal':	

		ip	=>	'192.168.0.5',	

}	

Applying	this	manifest	multiple	times	will	never	add	extra	entries,	and
changing	the	IP	address	in	the	manifest	will	be	reflected	correctly	in	host
files,	changing	the	existing	entry	and	not	creating	a	new	one.

There	is	an	additional	benefit	I	should	mention:	on	top	of
idempotency,	you	often	get	platform	agnosticism.	What	this
means	is	that	the	same	definition	could	be	used	for
completely	different	operating	systems	without	any	change.
For	example,	by	using	the	package	resource	in	Puppet,	you
don't	care	whether	the	underlying	system	uses	rpm	or	deb.

Now	you	should	better	understand	that,	when	it	comes	to	configuration
management,	tools	that	provide	the	declarative	way	of	doing	things	are
preferred.

Modern	configuration	management	tools	such	as	Chef	or	Puppet
completely	solve	the	problem	of	setting	up	a	single	machine.	There	is	an
increasing	number	of	high-quality	libraries	(be	it	cookbooks	or	modules)
for	configuring	all	kinds	of	software	in	an	(almost)	OS-agnostic	way.	But
configuring	what	goes	inside	a	single	server	is	only	part	of	the	picture.	The
other	part,	which	is	located	a	layer	above,	also	requires	new	tooling.

Infrastructure	as	Code	in	the
Cloud
Quite	often,	servers	are	only	one	part	of	infrastructure.	With	cloud
platforms	such	as	Amazon	Web	Services	(AWS),	Google	Cloud
Platform,	and	OpenStack	advancing	more	and	more,	there	is	an	increased
need	for	automating	and	streamlining	the	way	people	work	with	the
services	these	platforms	provide.	If	you	rely	heavily	on	at	least	one	cloud
provider	for	major	parts	of	your	project,	you	will	start	meeting	challenges
in	applying	consistent	patterns	of	their	usage.

The	approach	of	modern	configuration	management	tools,	while	having
been	around	for	quite	some	time	and	having	been	adopted	by	many
companies,	has	some	inconveniences	when	it	comes	to	managing	anything
but	servers.

There	is	a	strong	likelihood	you	would	want	these	patterns	to	be	written
once	and	then	applied	automatically.	Even	more,	you	need	to	be	able	to
reproduce	every	action	and	test	the	result	of	it,	following	the
aforementioned	Infrastructure	as	Code	principles.	Otherwise,	working
with	cloud	providers	will	either	end	up	in	so-called	ClickOps,	where	you
work	with	infrastructure	primarily	by	clicking	buttons	in	the	web	interface
of	a	cloud	provider,	or	you	will	script	all	the	processes	by	using	APIs	of
this	provider	directly.	And,	even	if	scripting	APIs	sounds	like	a	big	step
towards	true	Infrastructure	as	Code,	you	can	achieve	much	more	using
existing	tools	for	this	exact	task.

There	is	a	certain	need	for	a	configuration	tool	that	operates	one	level
higher	than	a	setup	of	a	single	server;	a	tool	that	would	allow	writing	a
blueprint	that	would	define	all	of	the	high-level	pieces	at	once:	servers,
cloud	services,	and	even	external	SaaS	products.	A	tool	like	this	is	called
given	a	different	name:	infrastructure	orchestrator,	infrastructure

provisioner,	infrastructure	templating,	and	so	on.	No	matter	what	you	call
it,	at	some	point	in	time,	your	infrastructure	will	really	need	it.

Requirements	for
infrastructure	provisioner
Before	proceeding	to	the	existing	solutions,	let's	lay	out	a	list	of	the	most
important	requirements	for	a	tool	such	as	this,	so	we	are	able	to	choose
one	wisely.

Supports	a	wide	variety	of
services
AWS	alone	already	has	dozens	of	entities	to	take	care	of.	Other	players
(DigitalOcean,	Google	Cloud,	Microsoft	Azure,	and	so	on)	increase	this
number	significantly.	And	if	you	want	to	add	smaller	SaaS	providers	to
the	game,	you	get	hundreds	of	resources	to	manage.

Idempotency
The	same	as	with	a	single-server	configuration,	reapplying	an
infrastructure	template	should	not	do	the	job	twice.	If	you	have	a	template
defining	50	different	resources,	from	EC2	instances	to	S3	buckets,	then
you	do	not	want	to	duplicate	or	recreate	all	of	them	every	time	you	apply
the	template.	You	want	only	missing	parts	to	be	created,	existing	ones	to
be	in	the	desired	state,	and	the	ones	which	have	become	obsolete	to	be
destroyed.

Dependency	resolution
It	is	important	to	be	able	not	just	to	define	2	app	servers,	1	DB	server,	and
2	security	groups,	but	to	also	point	them	to	each	other	using	lookup
mechanism.	Especially	when	creating	a	complete	environment	from
scratch,	you	want	to	ensure	the	correct	order	of	creation	to	achieve	the
flawless	bootstrap	of	each	component.

Here,	and	further	in	the	book,	the	term	environment	will
mean	a	complete	set	of	resources	that	an	infrastructure
consists	of.	It	includes	a	network	setup,	all	servers,	and	all
related	resources.

Robust	integration	with
existing	tools
Even	though	it	is	pretty	awesome	to	have	all	infrastructures	in	one
beautiful	template,	you	still	need	to	take	care	of	what	is	happening	on	each
particular	server:	applications	need	to	be	deployed,	databases	need	to	be
configured,	and	so	on.	This	is	not	the	job	for	an	infrastructure	provisioning
tool.	But,	certainly,	a	tool	like	this	should	easily	integrate	with	other	tools
such	as	Chef,	which	solves	this	problem	already.

Platform	agnosticism
Ideally,	templates	should	be	platform	agnostic.	This	means	that	if	I	define
a	template	for	2	app	servers,	1	db	server,	all	talk	to	each	other,	I	should	be
able	to	easily	switch	from	AWS	to	local	Vagrant	without	rewriting	the
template.	Platform	agnosticism	is	difficult	to	obtain,	while	at	the	same
time,	might	not	really	be	needed	that	often.	Completely	changing	the
underlying	platform	is	a	rather	rare	event	that	happens	perhaps	once	or
twice	in	a	product's	lifetime.

Smart	update	management
This	is	a	tricky	one,	and	at	the	moment	of	writing,	no	tool	can	do	it
flawlessly	in	every	case	(and,	honestly,	it	is	unlikely	one	will	ever).	What
happens	when	I	change	a	type	of	three	EC2	instances	from	m3.medium	to
c4.xlarge?	Will	my	m3.medium	instances	shut	down	and	be	replaced	one	by
one	by	new	ones?	Will	they	be	instantly	destroyed	leading	to	a	few
minutes	of	downtime?	Or	will	the	tool,	just	ignore	the	updated	instance
type?	Or	will	it	not	and	then	just	override	old	nodes	and	I	will	end	up	with
three	new	nodes	and	three	old	EC2	instances	that	I	have	to	remove
manually?	Solutions	to	this	problem	differ	from	platform	to	platform,
which	makes	it	more	complicated	for	the	tool	to	be	platform	agnostic.

Ease	of	extension
The	last	requirement	is	of	particular	importance:	there	must	be	an	easy
way	to	extend	this	tool	to	support	other	resources.	For	example,	if	a	tool
lacks	support	for	AWS	Kinesis	or	a	particular	feature	or	property	of
already	supported	service,	and	there	is	no	plan	to	support	it	officially,	then
there	has	to	be	a	way	to	implement	it	yourself	quickly.

Which	tools	exist	for
infrastructure	provisioning?
Now	that	we	have	a	problem	to	solve	and	a	list	of	requirements	the	tool
that	should	solve	the	problem,	we	can	go	into	the	specifics	of	the	different
existing	tools.

Scripting
Almost	every	cloud	provider	has	an	API,	and	if	there	is	an	API,	you	can
script	it.	You	could	also	go	beyond	a	single	script	and	develop	a	small-
focused	tool	just	for	your	company	to	create	environments.	The
disadvantages	are:	more	software	to	develop	and	support	in-house.

Configuration	management
Most	configuration	management	tools	already	have	a	way	to	create	cloud
resources.	Chef	has	Chef	provisioning,	which	allows	you	to	write	recipes
that	define,	not	entities	on	a	single	server,	but	multiple	servers	and
components,	such	as	security	groups	of	AWS	and	networking	parts.	There
are	also	Puppet	modules	which	wrap	cloud	APIs	into	Puppet	resources.
Ansible	also	has	modules	to	support	providers,	such	as	AWS,	OpenStack,
and	others.

While	the	idea	of	using	a	single	tool	for	both	levels:	high	complete
infrastructure	definition	and	inside-a-server	configuration,	is	tempting,	it
has	some	drawbacks.	One	of	them	is	lack	of	support	for	many	required
services	and	the	immaturity	of	these	solutions	in	general.

Also,	the	ways	to	use	these	tools	for	this	purpose	are	kind	of	ambiguous.
There	are	no	well-defined	workflows.	Let's	take	AWS	as	an	example.	The
recommended	way	to	set	up	a	firewall	in	AWS	environment	is	to	use
security	groups	(SGs).	SGs	are	a	separate	entity,	which	are	available	via
web	interface	or	API.

What	should	you	do	if	you	want	to	create	an	AWS	security	group	that
allows	connections	from	an	app	server	to	a	database	server?	Should	you
put	this	code	a	database	package	or	an	application	package?	An	AWS
security	group	clearly	doesn't	belong	to	either	of	them.

The	only	meaningful	solution	is	to	create	a	separate	package	which	is
dedicated	to	creating	the	security	groups	and	performs	searches	against	the
nodes	API	to	define	inbound	and	outbound	rules	for	these	groups.

It's	also	unclear	from	where	to	execute	this	kind	of	code.	From	a
workstation?	From	a	separate	AWS-resources	node	that	has	permissions	to
do	this	sort	of	thing?	How	do	you	secure	it?	How	do	you	distribute	keys?

And,	more	importantly,	how	do	you	make	this	process	reproducible	and
ready	to	be	used	in	CI/CD	pipelines?	There	is	no	clear	answer	to	these
questions	from	the	configuration	management	tools'	point	of	view.

The	other	downside	is	that	you	might	not	even	have,	or	want	to	have,	a
complete	configuration	management	in	your	organization.	Implementing
them	gives	huge	benefits,	but	a	steep	learning	curve	and	lack	of	in-house
expertise	can	be	significant	blockers	in	their	adaption.

CloudFormation/Heat
Both	AWS	and	OpenStack	have	a	built-in	way	to	define	all	of	their
resources	in	one	template.	Often,	it	works	nicely	in	environments	that	are
only	AWS	or	only	OpenStack.	But,	as	soon	as	you	want	to	add	another
provider	to	the	mix,	you	need	another	tool.

Terraform
Finally,	there	is	Terraform,	the	tool	this	book	is	about,	and	the	one	we	will
use	to	codify	a	complete	infrastructure,	or	at	least	the	top	layer	of	it.

A	short	overview	of	Terraform
Terraform	is	an	open	source	utility,	created	by	the	HashiCorp	company,
the	same	company	that	created	Vagrant,	Packer,	Consul,	and	other	popular
infrastructure	tools.	It	was	initially	released	in	July	2014,	and	since	then,
has	come	a	long	way	to	become	one	of	the	most	important	tools	for
infrastructure	provisioning	and	management.

This	is	how	Terraform	is	described	by	HashiCorp:

...	a	tool	for	safely	and	efficiently	building,	combining,	and	launching
infrastructure.	From	physical	servers	to	containers	to	SaaS	products,
Terraform	is	able	to	create	and	compose	all	the	components	necessary	to
run	any	service	or	application.	(https://www.hashicorp.com/blog/terraform.ht
ml).

Terraform	easily	fits	most	of	the	requirements	listed	here:

At	the	time	of	writing,	it	supports	over	30	different	providers,
from	a	huge	ones	such	as	AWS	to	a	smaller	ones	such	as	multiple
SaaS	DNS	providers.

Terraform	provides	special	configuration	language	to	declare	your
infrastructure	in	simple	text	templates.

Terraform	also	implements	a	complex	graph	logic,	which	allows
you	to	resolve	dependencies,	intelligibility	and	reliability.

When	it	comes	to	servers,	Terraform	has	multiple	ways	of
configuring	and	wiring	them	up	with	existing	configuration
management	tools.

https://www.hashicorp.com/blog/terraform.html

Terraform	is	not	platform	agnostic	in	the	sense	described	earlier,
but	it	allows	you	to	use	multiple	providers	in	a	single	template,
and	there	are	ways	to	make	it	somewhat	platform	agnostic.	We
will	talk	about	these	ways	towards	the	end	of	the	book.

Terraform	keeps	track	of	the	current	state	of	the	infrastructure	it
created	and	applies	delta	changes	when	something	needs	to	be
updated,	added,	or	deleted.	It	also	provides	a	way	to	import
existing	resources	and	target	only	specific	resources.

Terraform	is	easily	extendable	with	plugins,	which	should	be
written	in	the	Go	programming	language.

Over	the	next	seven	chapters,	we	will	learn	how	to	use	Terraform	and	all
of	its	features.

Journey	ahead	and	how	to	read
this	book
This	is	a	book	about	Terraform,	and	you	will	learn	everything	that	there	is
to	learn	about	this	tool.	There	are	two	main	parts	to	this	book,	split	into	six
chapters	of	pure	learning.

In	the	next	three	chapters,	we	will	learn	the	basics.	In	Chapter	2,	Deploying
First	Server,	the	next	one,	you	will	learn	the	basics	of	Terraform,	the	main
entities	it	uses,	and	how	to	deploy	our	first	server	with	it.	We	will	also	get
a	short	introduction	to	AWS	EC2.

In	Chapter	3,	Resource	Dependencies	and	Modules,	we	will	discover	how
exactly	Terraform	operates	with	its	resources	and	how	to	refactor	our
code.	In	Chapter	4,	Storing	and	Supplying	Configuration,	you	will	learn	all
the	possible	ways	you	can	configure	your	templates	with	the	various	APIs
Terraform	provides.

If	you	are	already	familiar	with	the	Terraform	basics,	Chapter	2,	Deploying
First	Server,	to	Chapter	4,	Storing	and	Supplying	Configuration,	might	be	a
bit	boring	for	you.	They	are	about	how	to	use	this	tool	as	a	first-time	user,
and	they	don't	cover	many	advanced	topics	that	you	will	get	to	once	you
run	Terraform	in	production.	Feel	free	to	skip	the	next	three	chapters	if
you,	already	used	Terraform.	For	advanced	topics,	head	over	to	Chapter	5,
Connecting	with	Other	Tools,	Chapter	6,	Scaling	and	Updating
Infrastructure,	and	Chapter	7,	Collaborative	Infrastructure.

In	Chapter	5,	Connecting	with	Other	Tools,	you	will	learn	how	to	connect
Terraform	with	many	different	tools,	from	configuration	management	to
infrastructure	testing	tools.	We	will	find	out	how	to	provision	and
reprovision	machines	and	how	to	use	Terraform	alongside	literally	any
other	tool.

In	Chapter	6,	Scaling	and	Updating	Infrastructure,	we	will	cover
infrastructure	updates	with	Terraform,	from	the	very	simple	cases	(such	as
changing	one	property	of	a	non-essential	resource)	to	complex	upgrade
scenarios	of	whole	clusters	of	machines.

Finally,	in	Chapter	7,	Collaborative	Infrastructure,	you	will	learn	how	to
collaborate	on	infrastructure	work	with	Terraform.	We	will	also	master
integration	testing	for	Terraform	environments.

Be	prepared:	this	book	is	not	only	about	Terraform.	It's	about
Infrastructure	as	Code	and	various	topics	surrounding	it,	such	as
Immutable	Infrastructure.	Terraform	will	be	the	main	tool	we	study,	but
definitely	not	the	only	one.	Configuration	management	tools,	testing	tools,
half	a	dozen	small	helper	utilities,	and	the	same	amount	of	AWS	services;
get	ready	to	learn	the	whole	toolset	required	to	embrace	Infrastructure	as
Code	because,	as	you	will	soon	notice,	Terraform	is	a	tool	that	must	be
supported	by	other	software.

In	the	final	chapter,	Chapter	8,	Future	of	Terraform,	we	will	run	through
multiple	topics	related	to	Terraform	which	did	not	make	it	into	the	other
chapters.	That	chapter,	also	includes	a	non-conventional	piece	on	the
future	of	Terraform,	which	you	may	or	may	not	want	to	read	before
proceeding	to	learn	it.

So,	without	further	delay,	let's	proceed	to	creating	our	first	server	with
Terraform.

Summary
In	this	chapter,	you	learned	a	lot	about	Infrastructure	as	Code	principles
and	some	tools	that	allow	you	to	leverage	them.	There	are	many	existing
mature	tools	that	take	care	of	configuring	what	goes	inside	a	single	server,
but	there	are	not	that	many	options	when	it	comes	to	defining	one	level
above	a	single	server.	We	also	listed	the	requirements	for	a	tool	that	would
take	care	of	configuring	this	higher	level.	Then,	we	came	to	the	conclusion
that	Terraform	meets	many,	if	not	all,	of	these	requirements.	In	the	next
chapter,	we	will	finally	get	our	hands	dirty,	install	Terraform,	and	get	to
know	how	to	use	it	to	create	a	single	AWS	EC2	server.

Deploying	First	Server
Now	that	we	know	which	problem	Terraform	solves,	we	can	proceed	to
learning	how	exactly	it	works	and	how	to	use	it.	In	this	chapter,	we	will
learn	a	bit	about	Terraform's	history,	install	it	on	our	workstation,	prepare
our	working	environment,	and	run	the	tool	for	the	first	time.	After	getting
everything	ready	for	our	work,	we	will	figure	out	what	a	Terraform
provider	is,	and	then	we	will	take	a	quick	tour	of	what	AWS	and	EC2	are.

With	this	knowledge	in	place,	we	will	first	create	an	EC2	instance	by	hand
(just	to	understand	the	pain	that	Terraform	will	eliminate),	and	then	we
will	do	exactly	the	same	with	the	help	of	the	Terraform	template.	That	will
allow	us	to	study	the	nature	of	the	Terraform	state	file.	Once	we	know
that,	we	will	update	our	server	using	the	same	template,	and	finally,
destroy	it.	By	the	end	of	the	chapter,	you	will	already	have	solid
knowledge	of	the	Terraform	basics,	and	you	will	be	ready	to	create	a
template	for	your	existing	infrastructure.

History	of	Terraform
Terraform	was	first	released	in	July	2014	by	a	company	named
HashiCorp.	It	is	the	same	company	that	brought	us	tool,	such	as	Vagrant,
Packer,	and	Vault.	Being	the	fifth	tool	in	the	HashiCorp	stack,	it	focused
on	providing	a	way	to	describe	the	complete	infrastructure	as	code:

...	From	physical	servers	to	containers	to	SaaS	products,	Terraform	is
able	to	create	and	compose	all	the	components	necessary	to	run	any
service	or	application.	With	Terraform,	you	describe	your	complete
infrastructure	as	code,	even	as	it	spans	multiple	service	providers.	Your
servers	may	come	from	AWS,	your	DNS	may	come	from	CloudFlare,	and
your	database	may	come	from	Heroku.	Terraform	will	build	all	these
resources	across	all	these	providers	in	parallel.	Terraform	codifies
knowledge	about	your	infrastructure	unlike	any	other	tool	before,	and
provides	the	workflow	and	tooling	for	safely	changing	and	updating
infrastructure.	-	https://www.hashicorp.com/blog/terraform.html

Terraform	is	an	open	source	tool	released	under	Mozilla	Public	License,
version	2.0.	The	code	is	stored	(as	all	other	tools	by	HashiCorp)	on
GitHub,	and	anyone	can	contribute	to	its	development.

As	a	part	of	its	Atlas	product,	HashiCorp	also	offers	a	hosted	service
named	Terraform	Enterprise,	which	solves	some	of	the	problems	that
the	open	source	version	doesn't	handle	well.	This	includes	a	central	facility
to	run	Terraform	from	access	control	policies,	remote	state	file	storage,
notifications,	built-in	GitHub	integration,	and	more.	Terraform	Enterprise
is	not	covered	by	this	book,	but	you	will	learn	how	to	achieve	some	(if	not
all)	of	the	same	functionalities	using	only	the	open	source	version	of
Terraform.

Despite	the	support	of	over	40	various	providers,	the	main	focus	of
HashiCorp	developers	is	on	Amazon	Web	Services,	Google	Cloud,	and
Microsoft	Azure.	All	other	providers	are	developed	and	supported	by	the

https://www.hashicorp.com/blog/terraform.html

community,	meaning	that	if	you	are	not	using	the	main	three,	then	you
might	have	to	contribute	to	the	code	base	yourself.

Be	really	prepared	(mentally	and	skill-wise)	to	contribute
some	code	yourself,	otherwise	you	might	be	out	of	luck.	The
author	of	this	book	faced	this	issue	during	a	project	that
relied	heavily	on	OpenStack.	It	took	half	a	dozen	pull
requests	on	GitHub	to	get	OpenStack	support	for	the	desired
state,	and	OpenStack	is	a	rather	big	and	popular	technology.
With	lesser-known	providers,	things	can	get	more
complicated	very	fast,	due	to	a	lack	of	Go	libraries	for	the
provider,	for	example.

The	code	of	Terraform	is	written	in	the	Go	programming	language,	and	it
is	released	as	a	single	binary	for	all	major	operating	systems.	Windows,
macOS	X,	FreeBSD,	OpenBSD,	Salaris,	and	any	Linux	distribution	are
supported	in	both	32-bit	and	64-bit	versions.

Terraform	is	still	a	relatively	new	piece	of	tech,	being	just	a	bit	over	2
years	old.	It	changes	a	lot	over	time	and	gets	new	features	with	every
release.	The	version	this	book	will	be	using	is	0.81.1,	and	all	code	samples
are	guaranteed	to	run	only	with	this	version.	That	said,	Terraform
developers	are	trying	to	preserve	compatibility	between	minor	versions;
likely	most,	if	not	all,	of	the	code	will	work	with	all	versions	between
0.8.0	and	0.9.0,	excluding	the	latter.

This	book	was	started	when	Terraform	0.7	was	the	latest
release.	Some	companies	are	still	stuck	with	this	version.
Because	of	this,	every	now	and	then,	you	will	see	tips	for
0.7.x	releases	as	well.

Having	learned	these	facts,	let's	finally	proceed	to	installing	Terraform	and
setting	up	our	workplace.

Preparing	work	environment
In	this	book,	we	will	focus	on	using	Terraform	in	a	Linux	environment.
The	general	usage	of	the	tool	should	be	the	same	on	all	platforms,	though
some	advanced	topics	and	practices	discussed	in	later	chapters	might
apply	only	to	Linux	systems.

As	mentioned	in	the	previous	section,	Terraform	is	distributed	as	a	single
binary,	packaged	inside	a	ZIP	archive.	Unfortunately,	HashiCorp	does	not
provide	native	packages	for	operating	systems.	That	means	the	first	step	is
to	install	unzip.	Depending	on	your	package	manager,	this	could	be	done
by	running	sudo	yum	install	unzip,	or	sudo	apt-get	install	unzip	or	it	might
even	already	be	installed.	In	any	case,	after	making	sure	that	you	can
unarchive	the	ZIP	files,	proceed	to	downloading	Terraform	from	the
official	website,	https://www.terraform.io/downloads.html.

Unzip	it	to	any	convenient	folder.	Make	sure	that	this	folder	is	available	in
your	PATH	environment	variable.	A	full	installation	command	sequence
could	look	as	follows:

$>	curl	-O	https://releases.hashicorp.com/terraform/0.8.2/terraform_0.8.2_linux_amd64.zip

$>	sudo	unzip	terraform_0.8.2_linux_amd64.zip	-d	/usr/local/bin/

That	will	extract	Terraform	binary	to	/usr/local/bin,	which	is	already
available	in	PATH	on	Linux	systems.

Finally,	let's	verify	our	installation:

$>	terraform	-v

Terraform	v0.8.2

https://www.terraform.io/downloads.html

We	have	a	working	Terraform	installation	now.	We	are	ready	to	write	our
first	template.	First,	create	an	empty	directory,	name	it	packt-terraform,	and
enter	it:

$>	mkdir	packt-terraform	&&	cd	packt-terraform

When	you	run	Terraform	commands,	they	look	for	files	with	the	.tf
extension	in	the	directory	you	run	them	from.	They	don't	take	files	from
subdirectories.	Be	careful:	Terraform	will	load	all	files	with	the	.tf
extension	if	you	run	it	without	arguments.

Let's	create	our	very	first,	not	yet	very	useful,	template:

$>	touch	template.tf

To	apply	the	template,	you	need	to	run	the	terraform	apply	command.	What
does	this	applying	mean?	In	Terraform,	when	you	run	apply,	it	will	read
your	templates	and	it	will	try	to	create	an	infrastructure	exactly	as	it's
defined	in	your	templates.	We	will	go	deeper	into	how	Terraform	exactly
processes	templates	in	a	later	chapter.

For	now,	let's	just	apply	our	empty	template:

$>	terraform	apply

Apply	complete!	Resources:	0	added,	0	changed,	0	destroyed.

After	each	run	is	finished,	you	get	the	number	of	resources	that	you've
added,	changed,	and	destroyed.	In	this	case,	it	did	nothing,	as	we	just	have
an	empty	file	instead	of	a	real	template.

To	make	Terraform	do	something	useful,	we	first	need	to	configure	our
provider,	and	even	before	that,	we	need	to	find	out	what	a	provider	is.

The	many	Terraform	providers
Providers	are	something	you	use	to	configure	access	to	the	service	you
create	resources	for.	For	example,	if	you	want	to	create	AWS	resources,
you	need	to	configure	the	AWS	provider.	This	would	specify	credentials
to	access	the	APIs	of	many	AWS	services.

At	the	time	of	writing,	Terraform	has	more	than	40	providers.	This
impressive	list	includes	not	only	major	cloud	providers	such	as	AWS	and
Google	Cloud,	but	also	smaller	services,	such	as	Fastly,	a	Content
Delivery	Network	(CDN)	provider.

Not	every	provider	requires	explicit	configuration.	Some	of	them	do	not
even	deal	with	external	services.	Instead,	they	provide	resources	for	local
entities.	For	example,	you	could	use	a	TLS	provider	to	generate	keys	and
certificates.

Nevertheless,	most	providers	deal	with	one	or	another	external	API	and
require	configuration.	In	this	book,	we	will	be	using	the	AWS	provider.
Before	we	configure	it,	let's	have	a	short	introduction	to	AWS.	If	you	are
already	familiar	with	this	platform,	feel	free	to	skip	the	next	section	and
proceed	directly	to	Configuring	AWS	provider.

Short	introduction	to	AWS
Amazon	Web	Services	is	a	cloud	offering	from	Amazon,	an	online	retail
giant.	Back	in	the	early	2000s,	Amazon	invested	money	in	an	automated
platform,	which	would	provide	services	for	things	such	as	network,
storage,	and	computation	to	Amazon	developers.	Developers	then	didn't
need	to	manage	underlying	the	infrastructure.	Instead,	they	would	use
provided	services	via	APIs	to	provision	virtual	machines,	storage	buckets,
and	so	on.

The	platform,	initially	built	to	power	Amazon	itself,	was	open	for	public
usage	in	2006.	The	first	released	service	was	Simple	Queue	Service
(SQS),	followed	by	the	two	most	commonly	used	AWS	services--Simple
Storage	Service	(S3)	and	Elastic	Compute	Cloud	(EC2)	were	released
and	anyone	could	pay	to	use	them.

Fast	forward	10	years.	AWS	now	has	over	70	different	services,	covering
practically	everything	a	modern	infrastructure	would	need.	It	has	services
for	virtual	networking,	queue	processing,	transactional	emails,	storage,
DNS,	relational	databases,	and	many,	many	others.	Businesses	such	as
Netflix	completely	moved	away	from	in-house	hardware	and	instead	are
building	new	types	of	infrastructure	on	top	of	cloud	resources,	getting
significant	benefits	in	terms	of	flexibility	and	cost-savings,	and	focusing
on	working	on	a	product,	rather	than	scaling	and	maturing	their	own	data
center.	For	more	information,	refer	to	the	following	URL:

http://www.datacenterknowledge.com/archives/2016/02/11/netflix-shuts-down-fi

nal-bits-of-own-data-center-infrastructure/

With	such	an	impressive	list	of	services,	it	becomes	increasingly	hard	to
juggle	all	the	involved	components	via	AWS	Management	Console:	the
in-browser	interface	for	working	with	AWS.	Of	course,	AWS	provides
APIs	for	almost	every	service	it	has,	but	once	again,	the	number	and
intersection	of	them	can	be	very	high,	and	it	only	grows	as	you	keep

http://www.datacenterknowledge.com/archives/2016/02/11/netflix-shuts-down-final-bits-of-own-data-center-infrastructure/

relying	on	the	cloud.	This	has	led	exactly	to	the	set	of	problems	discussed
in	Chapter	1,	Infrastructure	Automation,	you	end	up	either	with	intense
ClickOps	practices,	or	you	script	everything	you	can.

These	problems	make	AWS	a	perfect	candidate	to	explore	Terraform,	as
we	can	fully	understand	the	pain	caused	by	direct	usage	of	its	services.	Of
course,	AWS	is	not	free	to	use,	but	luckily,	for	a	long	time	now,	they	have
provided	Free	Tier.	Free	Tier	allows	you	to	use	lots	(but	not	all)	services
for	free	with	certain	limitations.	For	example,	you	can	use	a	single	EC2
instance	for	750	hours	a	month,	for	12	months,	for	free,	as	long	as	it	has
the	t2.micro	type.

EC2	instances	are	simply	virtual	servers.	You	pay	for	them
per-hour	of	usage,	and	you	can	choose	from	a	predefined	list
of	types.	Types	are	just	different	combinations	of
characteristics.	Some	are	optimized	for	high	memory	usage;
others	were	created	for	processor-heavy	tasks.

Let's	create	a	brand	new	AWS	account	for	our	Terraform	learning	goals:

1.	 Open	https://aws.amazon.com/free	and	click	on	CREATE	A	FREE
ACCOUNT.

2.	 Follow	the	on	screen	instructions	to	complete	registration.

Please	note	that,	in	order	to	use	Free	Tier,	you	have	to
provide	your	credit	card	details.	However,	you	won't	be
charged	unless	you	exceed	your	free	usage	limit.

https://aws.amazon.com/free/?nc1=h_ls

Using	Elastic	Compute	Cloud
We	will	look	at	three	ways	of	creating	an	EC2	instance:	manually	via	the
Management	Console,	with	the	AWS	Command	Line	Interface	(CLI),
and	with	Terraform.

Creating	an	instance	through
the	Management	Console
Just	to	get	a	feel	of	the	AWS	Management	Console	and	to	fully
understand	how	much	Terraform	simplifies	working	with	AWS,	let's
create	a	single	EC2	instance	manually:

1.	 Log	in	to	the	console	and	choose	EC2	from	the	list	of	services:

2.	 Click	on	Launch	Instance:

3.	 Choose	AWS	Marketplace	from	the	left	sidebar,	type	Centos	in
the	search	box,	and	click	on	the	Select	button	for	the	first	search
result:

4.	 On	each	of	the	next	pages,	just	click	on	Next	till	you	reach	the	end
of	the	process	and	you	get	a	notification	as	follows:

As	you	see,	it's	not	really	a	quick	process	to	create	a	single	virtual	server
on	EC2.	You	have	to	choose	an	AMI,	an	instance	type,	configure	network
details	and	permissions,	select	or	generate	an	SSH	key,	properly	tag	it,	pick
the	right	security	groups,	and	add	storage.	Imagine	that	your	day	would
consist	only	of	manual	tasks	such	as	this.	What	a	boring	job	would	it	be?

AMI	is	a	source	image	an	instance	is	created	from.	You	can
create	your	own	AMIs,	use	the	ones	provided	by	AWS,	or
select	one	from	a	community	at	AWS	Marketplace.	A
Security	Groups	(SG)	is	like	a	firewall.	You	can	attach
multiple	SGs	to	an	instance	and	define	inbound	and
outbound	rules.	It	allows	you	to	configure	access	not	only	for
IP	ranges,	but	also	for	other	security	groups.

And,	of	course,	we	looked	at	only	a	single	service:	EC2.	As	you	know
already,	there	are	over	70	of	them,	each	with	its	own	interface	to	click
through.	Let's	take	a	look	now	at	how	to	achieve	the	same	with	AWS	CLI.

Creating	an	instance	with	AWS
CLI
The	AWS	provides	CLI	to	interact	with	its	APIs.	It's	written	in	Python.
You	can	follow	installation	instructions	from	the	official	guide	to	get
started.	Here	is	the	link;	https://aws.amazon.com/cli/.

Perhaps	the	most	important	part	of	setting	up	AWS	CLI	is	access	key
configuration.	We	will	also	need	these	keys	for	Terraform.	To	get	them,
click	on	your	username	in	the	top-right	part	of	the	AWS	Management
Console,	click	on	Security	Credentials,	and	then	download	your	keys	from
the	Access	Keys	(Access	Key	ID	and	Secret	Access	Key)	menu:

Using	root	account	access	keys	is	considered	a	bad	practice
when	working	with	AWS.	You	should	use	IAM	users	and	per-
user	keys.	For	the	needs	of	this	book,	root	keys	are	okay,	but
as	soon	as	you	move	production	systems	to	AWS,	consider
using	IAM	and	reducing	root	account	usage	to	a	minimum.
Consider	reading	and	applying	AWS	IAM	Best	Practices
from	http://docs.aws.amazon.com/IAM/latest/UserGuide/best-prac
tices.html.

https://aws.amazon.com/cli/
http://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

Once	AWS	CLI	is	installed,	run	the	aws	configure	command.	It	will	prompt
you	for	your	access	key	and	region.	Once	you	are	finished,	you	can	use	it
to	talk	to	AWS	API.	Creating	an	EC2	instance	will	look	as	follows:

$>	aws	ec2	run-instances	--image-id	ami-xxxxxxxx	

																																																	--count	1	

																																																	--instance-type	t2.micro	

																																																	--key-name	MyKeyPair	

																																																	--security-groups	my-sg

While	already	much	better	than	doing	it	from	the	Management	Console,
it's	still	a	long	command	to	execute,	and	it	covers	only	the	creation	of	an
instance.	To	track	whether	the	instance	is	still	there	and	to	update	and
destroy	this	instance,	you	need	to	construct	a	similar	long	sequence	of
command-line	commands.	Let's	finally	do	it	properly	with	Terraform.

Configuring	AWS	provider
Before	using	Terraform	to	create	an	instance,	we	need	to	configure	AWS
provider.	This	is	the	first	piece	of	code	we	will	write	in	our	template.
Templates	are	written	in	a	special	language	named	HashiCorp
Configuration	Language	(HCL).	More	details	about	HCL	can	be	found
at	https://github.com/hashicorp/hcl.	You	can	also	write	your	templates	in
JSON,	but	this	is	recommended	only	if	a	template	is	itself	generated	or
read	by	a	machine.

We	can	configure	credentials	in	the	following	ways.

https://github.com/hashicorp/hcl

Static	credentials
With	this	method,	you	just	hardcode	your	access	keys	right	inside	your
template.	It	looks	as	follows:

				provider	"aws"	{

								access_key	=	"xxxxxxxxxxxxx"

								secret_key	=	"xxxxxxxxxxxxx"

								region	=	"us-east-1"

				}

Though	the	simplest	one,	it	is	also	the	least	flexible	and	secure.	You	don't
want	to	give	your	credentials	just	like	this	to	everyone	in	the	team.	Rather,
each	team	member	should	use	his	or	her	own	keys.	Consider	this	method	a
bad	practice	and	avoid	it	when	possible.

Environment	variables
If	not	specified	in	the	template,	Terraform	will	try	to	read	configuration
from	the	environment	variables	AWS_ACCESS_KEY_ID	and	AWS_SECRET_ACCESS_KEY.
You	can	also	set	your	region	with	the	AWS_DEFAULT_REGION	variable.	In	this
case,	complete	configuration	goes	down	to	the	following:

provider	"aws"	{}	

Credentials	file
If	Terraform	can't	find	keys	in	the	template	or	environment	variables,	it
will	try	to	fetch	them	from	the	credentials	file,	which	is	typically	stored	in
the	~/.aws/	credentials.	If	you	have	previously	installed	and	configured
AWS	CLI,	then	you	already	have	a	credentials	file	generated	for	you.	If
you	have	not	done	this,	then	you	can	add	it	yourself,	with	the	content	as
follows:

[default]	

aws_access_key_id	=		xxxxxxxxxxxxx	

aws_secret_access_key	=		xxxxxxxxxxxxx	

You	should	always	avoid	setting	credentials	directly	in	the	template.	It's
up	to	you	whether	you	use	environment	variables	or	a	credentials	file.
Whichever	method	you	picked,	let's	add	the	following	configuration	to
template.tf:

				provider	"aws"	{

						region	=	"eu-central-1"

				}

Running	the	terraform	apply	command	still	won't	do	anything	because	we
did	not	specify	any	resources	we	want	our	infrastructure	to	have.	Let's	do
that	now.

Creating	an	EC2	instance	with
Terraform
Resources	are	components	of	your	infrastructure.	They	can	be	something
as	complex	as	a	complete	virtual	server,	or	something	as	simple	as	a	DNS
record.	Each	resource	belongs	to	a	provider,	and	the	type	of	the	resource	is
suffixed	with	the	provider	name.	The	configuration	of	a	resource	takes	the
following	form:

resource	"provider-name_resource-type"	"resource-name"	{	

		parameter_name	=	parameter_value	

}	

The	combination	of	resource	type	and	resource	name	must	be	unique	in
your	template;	otherwise	Terraform	will	complain.

There	are	three	types	of	things	you	can	configure	inside	a	resource	block:
resource-specific	parameters,	meta-parameters,	and	provisioners.	For	now,
let's	focus	on	resource-specific	parameters.	They	are	unique	to	each
resource	type.

We	will	create	an	EC2	instance.	The	aws_instance	resource	is	responsible
for	this	job.	To	create	an	instance,	we	need	to	set	at	least	two	parameters:
ami	and	instance_type.	Some	parameters	are	required,	whereas	others	are
optional,	ami	and	instance_type	being	the	required	ones.

You	can	always	check	the	complete	list	of	available
parameters	in	the	docs,	on	the	page	dedicated	to	the
particular	resource.	For	example,	to	get	the	list	and
description	of	all	the	aws_instance	resource	parameters,	check
out

https://www.terraform.io/docs/providers/aws/r/instance.html.

We'll	be	using	the	official	Centos	7	AMI.	As	we	configured	the	AWS
region	to	be	eu-central-1,	we	have	to	use	an	AMI	with	the	ID	ami-9bf712f4.
We	will	use	the	t2.micro	instance	type,	as	it's	the	cheapest	one	and	is
available	as	part	of	the	Free	Tier	offering.

Update	the	template	to	look	as	follows:

#	Provider	configuration	

provider	"aws"	{	

		region	=	"eu-central-1"	

}	

#	Resource	configuration	

resource	"aws_instance"	"hello-instance"	{	

		ami	=	"ami-9bf712f4"	

		instance_type	=	"t2.micro"	

		tags	{	

				Name	=	"hello-instance"	

		}	

}	

You	might	also	need	to	specify	the	subnet_id	parameter	if	you
don't	have	a	default	VPC.	For	this,	you	will	need	to	create	a
VPC	and	a	subnet.	You	can	either	do	it	now	yourself	or	wait
till	the	next	chapter,	where	we	will	be	extending	our	template
with	VPC	support.	Don't	worry	if	you	don't	know	what	VPC
is.	We	will	figure	it	out	pretty	soon.

As	you	will	have	noted,	HCL	allows	commenting	your	code	using	a	hash
sign	in	front	of	the	text	you	want	to	be	commented.

Another	thing	to	look	at	is	the	tags	parameter.	Terraform	is	not	limited	to
simple	string	values.	You	can	also	have	numbers,	Boolean	values	(true,
false),	lists	(["elem1",	"elem2",	"elem3"]),	and	maps.	The	tags	parameter	is	a
map	of	tags	for	the	instance.

Let's	apply	this	template!

https://www.terraform.io/docs/providers/aws/r/instance.html

$>	terraform	apply	

aws_instance.hello-instance:	Creating...	

		ami:																						""	=>	"ami-378f925b"	

		<	>	

		instance_type:												""	=>	"t2.micro"	

		key_name:																	""	=>	"<computed>"	

		<	>	

		tags.%:																			""	=>	"1"	

		tags.Name:																""	=>	"hello-instance"	

		tenancy:																		""	=>	"<computed>"	

		vpc_security_group_ids.#:	""	=>	"<computed>"	

aws_instance.hello-instance:	Still	creating...	(10s	elapsed)	

aws_instance.hello-instance:	Still	creating...	(20s	elapsed)	

aws_instance.hello-instance:	Still	creating...	(30s	elapsed)	

aws_instance.hello-instance:	Creation	complete	

	

Apply	complete!	Resources:	1	added,	0	changed,	0	destroyed.	

	

The	state	of	your	infrastructure	has	been	saved	to	the	path	

below.	This	state	is	required	to	modify	and	destroy	your	

infrastructure,	so	keep	it	safe.	To	inspect	the	complete	state	

use	the	`terraform	show`	command.	

State	path:	terraform.tfstate	

Wow,	that's	a	lot	of	output	for	a	simple	command	creating	a	single
instance.	Some	parts	of	it	were	replaced	with	arrow-wrapped	dots,	so	don't
be	surprised	when	you	see	even	more	parameter	values	when	you	actually
run	the	command.	Before	digging	into	the	output,	let's	first	verify	that	the
instance	was	really	created	in	the	AWS	Management	Console:

With	just	12	lines	of	code	and	a	single	Terraform	command	invocation,
we	got	our	EC2	instance	running.	So	far,	the	result	we	got	is	not	that

different	from	using	AWS	CLI,	though:	we	only	created	a	resource.	What
is	of	more	interest	is	how	we	update	and	destroy	this	instance	using	the
same	template.	To	understand	how	Terraform	does	it,	you	need	to	learn
what	the	state	file	is.

Working	with	state
If	you've	read	the	output	of	the	terraform	apply	command	carefully,	you
might	be	really	curious	about	what	this	part	means:

The	state	of	your	infrastructure	has	been	saved	to	the	path	

below.	This	state	is	required	to	modify	and	destroy	your	

infrastructure,	so	keep	it	safe.	To	inspect	the	complete	state	

use	the	`terraform	show`	command.	

State	path:	terraform.tfstate	

What	it	means	is	that	Terraform	didn't	simply	create	an	instance	and	forget
about	it.	It	actually	saved	everything	it	knows	about	this	instance	to	a
special	file,	named	the	state	file.	In	this	file,	Terraform	stores	the	state	of
all	the	resources	it	created.	This	file	is	saved	to	the	same	directory	where
the	Terraform	template	is,	with	the	.tfstate	extension.	The	format	of	the
state	file	is	simple	json.	Let's	take	a	look	at	it	piece	by	piece.

{	

				"version":	3,	

				"terraform_version":	"0.8.2",	

				"serial":	1,	

				"lineage":	"65a6dc1b-3f42-4f23-8df1-8b2275602aff",	

First	of	all,	Terraform	specifies	the	version	of	the	state	file.	It's	not
the	version	of	this	particular	state;	it's	a	version	of	a	format	of
state	files	in	general.	This	allows	Terraform	to	move	the	format	of
the	state	file	forward	without	breaking	compatibility	with	older
versions.

The	terraform_version	key	is	self-explanatory:	it's	the	version	of
Terraform	that	the	state	file	was	created	with.	If	you	try	to	use
Terraform	0.7	with	a	state	file	that	specifies	version	0.8.2,
Terraform	will	not	allow	you	to	do	so.

The	serial	key	is	increased	every	time	you	update	your	state,	even
with	the	smallest	modifications.	It	is	used	by	Terraform	to	detect
potentially	conflicting	updates.

The	lineage	key	is	set	only	when	you	create	a	new	state	file.	After
this,	the	value	of	lineage	is	never	updated	and	is	not	currently	used
by	Terraform.	It	is	planned	to	be	used	in	order	to	reduce	mistakes
when	working	with	remote	state	files,	which	we	will	discuss	in
later	chapters.

What	goes	next	in	the	state	file	are	actually	resources	you've	created.
Terraform	obtains	all	the	information	possible	about	the	resources	and
writes	it	to	the	state	file:

					"modules":	[

												{

																"path":	[

																				"root"

],

																"outputs":	{},

																"resources":	{

																				"aws_instance.hello-instance":	{

																								"type":	"aws_instance",

																								"depends_on":	[],

																								"primary":	{

																												"id":	"i-06f88fe6a2b4307b8",

																												"attributes":	{

																																"ami":	"ami-9bf712f4",

																																"availability_zone":	"eu-central-1a",

																																"disable_api_termination":	"false",

																																"ebs_block_device.#":	"0",

																																"ebs_optimized":	"false",

																																"ephemeral_block_device.#":	"0",

																																"iam_instance_profile":	"",

																																"id":	"i-06f88fe6a2b4307b8",

You've	never	specified	parameters	such	as	availability	zone	or
disable_api_termination,	and	yet	Terraform	has	them	in	the	state	file.

The	state	file	is	what	makes	Terraform	capable	of	not	only	creating,	but
also	updating	and	destroying	infrastructure.	Terraform	knows	if	the	actual
state	of	resources	has	changed	and	if	parameters	in	a	template	have
changed,	and	then	it	intelligently	figures	out	what	the	final	state	should
look	like	and	gets	your	infrastructure	to	that	state.

This	makes	the	state	file	so	important	that	you	never	want	to	lose	it	after
you	have	created	your	environment.	Losing	the	state	file	means	losing
control	of	your	environment	through	Terraform.	It	can	be	very	frustrating
to	create	a	huge	test	environment,	delete	the	state	file	by	accident,	and
then	delete	all	resources	manually	through	the	AWS	Management
Console.

The	state	file	was	not	made	to	read	by	humans.	But	Terraform	has
multiple	commands	that	allow	you	to	view	and	modify	the	state	file
conveniently.	The	terraform	state	list	command	will	list	all	resources	in
the	state	file:

$>	terraform	state	list

aws_instance.hello-instance

The	terraform	show	command	will	print	a	complete	state	in	a	human-
readable	format:

				$>	terraform	show

				aws_instance.hello-instance:

						id	=	i-06f88fe6a2b4307b8

						ami	=	ami-9bf712f4

						availability_zone	=	eu-central-1a

						disable_api_termination	=	false

						ebs_block_device.#	=	0

						ebs_optimized	=	false

						ephemeral_block_device.#	=	0

						iam_instance_profile	=	

						instance_state	=	running

						instance_type	=	t2.micro

						key_name	=	

						monitoring	=	false

						...

If	you	want	to	view	the	details	of	only	one	resource,	you	can	use	terraform
state	show	path_to_resource.	Running	terraform	state	show
aws_instance.hello-instance	will	give	you	all	the	details	about	the	created
instance.

After	talking	so	much	about	how	useful	the	state	file	is,	let's	finally	use
Terraform	to	update	the	instance.

Handling	resource	updates
Let's	change	our	instance's	name	to	be	hello-updated-instance:

				resource	"aws_instance"	"hello-instance"	{

						ami	=	"ami-9bf712f4"

						instance_type	=	"t2.micro"

						subnet_id	=	"subnet-5f22f536"

						tags	{

								Name	=	"hello-update-instance"

						}

				}

Before	we	actually	run	the	update,	wouldn't	it	be	useful	to	see	what
exactly	Terraform	do	when	we	run	the	terraform	apply	command	again?
Luckily,	there	is	the	terraform	plan	command	that	does	exactly	the	same,
that	is,	it	shows	you	what	applying	do	by	checking	the	template,	state	file,
and	actual	state	of	the	resource:

				$>	terraform	plan

				Refreshing	Terraform	state	in-memory	prior	to	plan...

				The	refreshed	state	will	be	used	to	calculate	this	plan,	but

				will	not	be	persisted	to	local	or	remote	state	storage.

				

				aws_instance.hello-instance:	Refreshing	state...	(ID:	i-119a10ac)

				

				The	Terraform	execution	plan	has	been	generated	and	is	shown	below.

				Resources	are	shown	in	alphabetical	order	for	quick	scanning.	Green	resources

				will	be	created	(or	destroyed	and	then	created	if	an	existing	resource

				exists),	yellow	resources	are	being	changed	in-place,	and	red	resources

				will	be	destroyed.	Cyan	entries	are	data	sources	to	be	read.

				

				Note:	You	didn't	specify	an	"-out"	parameter	to	save	this	plan,	so	when

				"apply"	is	called,	Terraform	can't	guarantee	this	is	what	will	execute.

				

				~	aws_instance.hello-instance

								tags.Name:	"hello-instance"	=>	"hello-update-instance"

				

				Plan:	0	to	add,	1	to	change,	0	to	destroy.

It's	a	good	practice	to	always	run	plan	before	apply.	This	saves	you	from
accidental	deletion	or	resource	updates	that	you	didn't	plan	to	have.

We	can	also	check	whether	the	template	file	is	valid	with	the	terraform
validate	command.	Remove	one	of	(any	of)	the	equal	signs	from	your
template,	then	run	this	command	to	get	a	result	similar	to	the	following:

$>	terraform	validate	

Error	loading	files	Error	parsing	/home/kshirinkin/work/packt-terraform-rewrites

/template.tf:	At	9:17:	nested	object	expected:	LBRACE	got:	ASSIGN	

Another	nice	command	is	terraform	fmt.	Similar	to	(and	likely	inspired	by)
the	Go	go	fmt	command,	terraform	fmt	will	format	your	template	file	to
comply	with	best	practices.	If	you	run	it,	then	your	code	will	be	aligned	a
bit	more	nicely:

#	Resource	configuration	

resource	"aws_instance"	"hello-instance"	{	

		ami											=	"ami-9bf712f4"	

		instance_type	=	"t2.micro"	

		subnet_id					=	"subnet-5f22f536"	

	

		tags	{	

				Name	=	"hello-update-instance"	

		}	

}	

It	looks	like	nothing	terrible	will	happen	if	we	run	the	terraform	apply
command,	so	let's	go	ahead	and	do	it:

				$>	terraform	apply

				aws_instance.hello-instance:	Refreshing	state...	(ID:	i-06f88fe6a2b4307b8)

				aws_instance.hello-instance:	Modifying...

						tags.Name:	"hello-instance"	=>	"hello-update-instance"

				aws_instance.hello-instance:	Modifications	complete

				

				Apply	complete!	Resources:	0	added,	1	changed,	0	destroyed.

				

				The	state	of	your	infrastructure	has	been	saved	to	the	path

				below.	This	state	is	required	to	modify	and	destroy	your

				infrastructure,	so	keep	it	safe.	To	inspect	the	complete	state

				use	the	`terraform	show`	command.

				

				State	path:	terraform.tfstate

Terraform	successfully	modified	our	instance.	Let's	see	what	happened	to
our	state	file:

				$>	head	terraform.tfstate

				{

								"version":	3,

								"terraform_version":	"0.8.2",

								"serial":	1,

								"lineage":	"65a6dc1b-3f42-4f23-8df1-8b2275602aff",

								"modules":	[

												{

																"path":	[

																				"root"

],

As	expected,	Terraform	increased	the	serial	key,	as	it	does	for	every
Terraform	run.	We	are	not	going	to	need	this	specific	instance	any	more.
We	can	safely	destroy	it	now.

Destroying	everything	we've
built
Destroying	infrastructure	with	Terraform	is	as,	easy	as	or	even	easier	than,
creating	it.	All	you	need	to	do	is	to	run	the	terraform	destroy	command,	as
shown	here:

				$>	terraform	destroy

				Do	you	really	want	to	destroy?

						Terraform	will	delete	all	your	managed	infrastructure.

						There	is	no	undo.	Only	'yes'	will	be	accepted	to	confirm.

						Enter	a	value:	

Terraform	is	nice	enough	to	ask	you	for	a	confirmation,	in	case	you	typed
the	terraform	destroy	command	by	accident:

				aws_instance.hello-instance:	Refreshing	state...	(ID:	i-06f88fe6a2b4307b8)

				aws_instance.hello-instance:	Destroying...

				aws_instance.hello-instance:	Still	destroying...	(10s	elapsed)

				aws_instance.hello-instance:	Still	destroying...	(20s	elapsed)

				aws_instance.hello-instance:	Destruction	complete

				Apply	complete!	Resources:	0	added,	0	changed,	1	destroyed.

If	we	want	to	get	rid	of	only	one	particular	resource	from	our	template,	we
don't	need	to	run	the	terraform	destroy	command.	We	could	simply	remove
this	resource	from	template.tf,	and	the	next	terraform	apply	command	will
figure	out	that	you	don't	need	this	resource	any	more	and	destroy	it.	Try	it
yourself,	by	first	running	the	terraform	apply	command	to	create	the
instance	again,	then	removing	the	instance	from	template.tf,	and	then	plan
and	apply	again.	In	the	next	chapter,	we	won't	need	this	particular	instance
any	longer.

Summary
You	learned	so	much	in	this	chapter!	After	learning	some	background
history	about	Terraform	origins,	we	wrote	our	very	first	template.	Then,
we	took	a	quick	tour	of	AWS,	just	to	make	sure	that	we	are	able	to	use	it.
After	gaining	access	to	EC2,	we	created	an	instance	in	three	different
ways:

Via	AWS	Management	Console

Via	AWS	CLI

With	Terraform

Using	Terraform,	baked	by	its	powerful	state	file,	gives	us	a	lot	of
benefits,	such	as	smart	update	management.	By	now,	we	can	already
create,	update,	and	destroy	simple	infrastructures	with	Terraform.
However,	there	is	yet	so	much	to	learn.	How	do	you	specify	dependencies
between	resources?	How	do	you	keep	the	ever-growing	size	of	the
template	under	control?	These	are	the	questions	we	will	get	answers	to	in
the	next	chapter.

Resource	Dependencies	and
Modules
Previously,	we	have	managed	only	one	resource	with	Terraform--a	single
EC2	instance.	Obviously,	the	real	infrastructure	is	much	more	complicated
than	a	single	server.	The	more	resources	you	have,	the	more	dependencies
between	them	you	have	to	handle.	Also,	when	the	number	of	resources
grows,	you	will	have	a	hard	time	managing	them	via	a	single	huge
template	file.

In	this	chapter,	we	will	learn	about	one	of	the	most	important	features	of
Terraform:	dependency	graph.	We	will	figure	out	how	dependencies
work	and	see	it	in	practice	by	creating	a	complete	virtual	network	via
AWS	VPC.	Then,	we	will	learn	how	to	work	around	some	limitations	in
dependency	handling	using	some	of	the	advanced	Terraform	features.
Finally,	when	we	find	out	that	our	template	is	too	big,	we	will	use
Terraform	modules	to	Don't	Repeat	Yourself	(DRY)	our	code.

DRY	is	a	software	development	principle.	Its	goal	is	to
reduce	the	amount	of	duplication	in	your	code,	thus	reducing
the	chances	of	mistakes	and	increasing	the	maintainability	of
the	code.

	

Creating	an	AWS	Virtual
Private	Cloud
Perhaps	one	of	the	best	features	of	AWS	is	Virtual	Private	Cloud	(VPC).

In	essence,	VPC	is	a	virtual	network	that	you	can	divide	into	subnets.
Some	subnets	can	be	public	(with	access	to	the	internet),	and	some	are
private.	You	can	define	routing	between	subnets,	and	by	default,	they	can
freely	access	each	other.	You	can	also	create	VPN	to	your	VPC,	add	NAT
gateways,	manage	DHCP	options,	and	define	ACLs	for	your	networks.
VPC	is	a	complex	service	with	many	subtools	and	options.	For	our
purpose,	we	will	use	only	a	subset	of	them	though.

Typical	use	case	for	VPC:	Keeping	publicly	accessible	web
servers	in	public	subnets	and	database	servers	in	private
ones,	and	enabling	a	secure	connection	between	cloud
resources	and	on-premise	machines.

Security	groups	are	also	a	part	of	AWS	VPC.	With	security	groups,	you
can	define	inbound	and	outbound	firewall	rules	and	then	you	can	attach
these	groups	to	EC2	instances.	As	a	source	of	traffic	for	these	rules,	you
can	either	use	IP	ranges,	IDs	of	other	security	groups,	or	even	IDs	of	other
instances.

If	you	created	a	new	AWS	account	in	the	previous	chapter,	you	should
have	a	default	VPC.	If	you	have	a	very	old	AWS	account,	then	you	might
not	have	it.	In	any	case,	we	won't	use	any	precreated	VPCs.	Instead,	let's
start	with	creating	a	VPC	by	making	our	template.tf	look	as	follows:

provider	"aws"	{	

		region	=	"eu-central-1"	

}	

resource	"aws_vpc"	"my_vpc"	{	

		cidr_block	=	"10.0.0.0/16"	

}	

For	each	VPC,	you	need	to	specify	a	CIDR	block	range	of	IP	addresses
used	for	EC2	instances	in	this	VPC.	Go	ahead	and	apply	the	following
template:

$>	terraform	apply	

	

aws_vpc.my_vpc:	Creating...

		cidr_block:																""	=>	"10.0.0.0/16"

		default_network_acl_id:				""	=>	"<computed>"

		default_security_group_id:	""	=>	"<computed>"

		dhcp_options_id:											""	=>	"<computed>"

		enable_classiclink:								""	=>	"<computed>"

		enable_dns_hostnames:						""	=>	"<computed>"

		enable_dns_support:								""	=>	"<computed>"

		instance_tenancy:										""	=>	"<computed>"

		main_route_table_id:							""	=>	"<computed>"

aws_vpc.my_vpc:	Creation	complete

Apply	complete!	Resources:	1	added,	0	changed,	0	destroyed.	

In	case	you	are	asking	yourself	what	<computed>	means,	it
means	that	the	value	won't	be	known	until	the	resource	is
created.

Creating	a	VPC	is	not	enough:	to	be	able	to	place	instances	in	this
network,	we	also	need	a	subnet.	This	subnet	belongs	to	a	previously
created	VPC.	This	means	that	we	have	to	pass	a	VPC	ID	when	we	create
it.	We	don't	have	to	hardcode	it	though.	Terraform,	via	interpolation
syntax,	allows	us	to	reference	any	other	resource	it	manages	using	the
following	syntax:	${RESOURCE_TYPE.RESOURCE_NAME.ATTRIBUTE_NAME}.

Interpolation	allows	you	to	reference	other	resources	and	variables	and
call	various	functions.	In	the	case	of	resource	reference,	it	saves	you	from

hardcoding	their	IDs.	Terraform	will	put	the	required	value	(in	this	case,
VPC	ID)	as	soon	as	it	has	it.

Add	the	following	to	the	template:

resource	"aws_subnet"	"public"	{	

				vpc_id	=	"${aws_vpc.my_vpc.id}"	

				cidr_block	=	"10.0.1.0/24"	

}	

Note	the	interpolated	string:	${aws_vpc.my_vpc.id}.	We	referenced	the
previously	created	VPC	inside	a	subnet	configuration.	That's	how	an
interpolation	syntax	in	Terraform	looks:	you	wrap	the	code	with	${}.

We	will	take	a	deeper	look	at	variables	and	functions	a	bit	later.	For	now,
let's	focus	on	how	Terraform	handles	referencing	resources	inside	other
resources.	After	all,	it's	backed	by	one	of	the	most	powerful	core
Terraform	features:	dependency	graph.

Understanding	dependency
graph
Terraform	doesn't	simply	build	your	resources	and	write	their
configuration	into	a	state	file.	Internally,	it	also	manages	a	dependency
graph	of	all	the	resources	you	have.	It's	hard	to	see	with	a	single	resource,
but	now	we	have	two	interconnected	resources:	VPC	and	a	subnet.	The
latter	one	depends	on	the	existence	of	the	first	one.	But	wait,	what	is	a
dependency	graph	anyway?

First	of	all,	let's	recall	what	a	graph	is.	We	won't	go	deep	into
mathematical	formulas	and	advanced	graph	theories	and	examples	here.
Graph	theory	is	big,	and	there	are	so	many	applications	of	it.

Though	there	are	many	definitions	of	a	graph,	which	differ	depending	on
the	knowledge	area	and	industry,	the	simplest	description	is	a	set	of	nodes
and	edges,	where	edges	represent	a	connection	between	two	nodes.	It's
easier	to	look	at	a	graph	than	to	read	about	one:

Here,	we	have	two	nodes	connected	to	each	other.	Nothing	really
complicated.	What	is	a	dependency	graph	then?	Let's	steal	a	definition
from	Wikipedia	(https://en.wikipedia.org/wiki/Dependency_graph):

In	mathematics,	computer	science	and	digital	electronics,	a	dependency
graph	is	a	directed	graph	representing	dependencies	of	several	objects
towards	each	other.	It	is	possible	to	derive	an	evaluation	order	or	the
absence	of	an	evaluation	order	that	respects	the	given	dependencies	from
the	dependency	graph.

Here,	directed	graph	means	a	graph	in	which	edges	have	a	direction.	If

https://en.wikipedia.org/wiki/Dependency_graph

we	update	the	preceding	graph	to	be	directed,	it	would	look	as	follows:

A	dependency	graph	allows	us,	for	example,	to	properly	order	the	creation
or	destruction	of	nodes	or	to	order	a	set	of	commands.	It's	all	about
ordering,	actually.	When	you	use	a	package	manager	in	your	operating
system,	most	likely,	some	kind	of	graph	is	used	to	resolve	dependencies
between	packages	and	install	the	missing	ones.

Dependency	graphs	are	used	in	many	places:	compilers,	package
managers,	to	build	scripts	such	as	Make.	Also,	of	course,	they	are	used	by
Terraform	to	handle	dependencies	and	the	order	of	creation	and	deletion
of	resources.

There	are	just	three	types	of	nodes	in	a	Terraform	graph:

Resource	node

Provider	configuration	node

Resource	meta-node

What	the	resource	node	and	provider	configuration	node	are	responsible
for	is	clear:	the	provider	node	configures	a	provider	(AWS,	in	our
examples)	and	the	resource	node	manages	an	entity	of	this	provider	(EC2,
VPC,	and	so	on,	in	the	case	of	AWS).	A	resource	meta-node	doesn't	really
do	anything	special;	it	is	used	for	convenience	and	makes	a	graph	more
pretty.	It	is	applicable	only	if	you	specify	a	count	parameter	greater	than
one.

We	will	get	back	to	count	parameters	in	Chapter	6,	Scaling
and	Updating	Infrastructure.

When	Terraform	builds	a	graph,	it	includes	resources	both	in	the	state	file
and	in	your	template.	It	marks	the	ones	that	are	missing	inside	the	template
for	destruction.	For	some	resources,	it	creates	multiple	nodes.	In	the	case
of	recreation,	there	is	one	node	for	the	destroy	action	and	one	for	creation,
both	for	the	same	resource.

Conveniently,	there	is	the	terraform	graph	command,	which	will	show	you
the	graph	for	your	template:

$>	terraform	graph	

digraph	{	

			compound	=	"true"	

			newrank	=	"true"	

			subgraph	"root"	{	

									"[root]	aws_subnet.public"	[label	=	"aws_subnet.public",	shape	=	"box"]	

									"[root]	aws_vpc.my_vpc"	[label	=	"aws_vpc.my_vpc",	shape	=	"box"]	

									"[root]	provider.aws"	[label	=	"provider.aws",	shape	=	"diamond"]	

									"[root]	aws_subnet.public"	->	"[root]	aws_vpc.my_vpc"	

									"[root]	aws_vpc.my_vpc"	->	"[root]	provider.aws"	

			}	

}	

The	output	of	this	command	may	not	look	very	representative,	but	it	is
actually	in	DOT	format,	which	you	can	easily	convert	to	a	picture.	For
example,	if	you	have	the	GraphViz	package	installed,	you	could	do	it	with
the	terraform	graph	|	dot	-Tpng	>	graph.png	command.	All	further	graphs	are
generated	exactly	by	this	command.

You	can	find	GraphViz	packages	for	various	operating	systems
on	the	official	website	http://www.graphviz.org/.

http://www.graphviz.org/

Provider	nodes	are	drawn	as	rhombuses	and	resources	as	rectangles.	You
can	clearly	see	how	resources	depend	on	each	other	in	this	picture.	It	is
much	easier	to	understand,	compared	with	just	looking	at	the	template.	We
will	use	graph	outputs	a	lot	in	this	chapter.

Playing	with	Terraform	graphs
Let's	play	around	with	our	VPC	a	bit	to	better	understand	how	resource
dependencies	are	handled.	Instead	of	adding	a	subnet,	let's	destroy	the
complete	infrastructure	we	have	so	far	and	then	plan	creation	from
scratch:

				$>	terraform	destroy

				$>	terraform	plan

										#	...	

				+	aws_subnet.public

								availability_zone:							"<computed>"

								cidr_block:														"10.0.1.0/24"				map_public_ip_on_launch:	"false"

								vpc_id:																		"${aws_vpc.my_vpc.id}"

				#	...

Terraform	doesn't	know	the	VPC	ID	yet,	so	it	doesn't	show	it	to	you	in	the
plan.	Let's	apply	the	template	and	observe	the	order	of	resource	creation:

				$>	terraform	apply

				aws_vpc.my_vpc:	Creating...

						cidr_block:																""	=>	"10.0.0.0/16"

						default_network_acl_id:				""	=>	"<computed>"

						default_security_group_id:	""	=>	"<computed>"

						dhcp_options_id:											""	=>	"<computed>"

						enable_classiclink:								""	=>	"<computed>"

						enable_dns_hostnames:						""	=>	"<computed>"

						enable_dns_support:								""	=>	"<computed>"

						instance_tenancy:										""	=>	"<computed>"

						main_route_table_id:							""	=>	"<computed>"

				aws_vpc.my_vpc:	Creation	complete

				aws_subnet.public:	Creating...

						availability_zone:							""	=>	"<computed>"

						cidr_block:														""	=>	"10.0.1.0/24"

						map_public_ip_on_launch:	""	=>	"false"

						vpc_id:																		""	=>	"vpc-8f8568e7"

				aws_subnet.public:	Creation	complete

Terraform	knew	(from	the	graph	it	built)	that	subnet	requires	VPC	to	exist,
so	it	created	it	first,	followed	by	subnet.

What	happens	if	we	recreate	the	VPC?	Let's	try	it	out	with	the	help	of	the
taint	command.	terraform	taint	marks	a	single	resource	for	recreation.	The
resource	will	be	destroyed	and	then	created	again.

	$>	terraform	taint	aws_vpc.my_vpc			

				The	resource	aws_vpc.my_vpc	in	the	module	root	has	been	marked	as	tainted!

				

	$>	terraform	plan

			-/+	aws_subnet.public

							availability_zone:							"eu-central-1b"	=>	"<computed>"

							cidr_block:														"10.0.1.0/24"	=>	"10.0.1.0/24"

							map_public_ip_on_launch:	"false"	=>	"false"

							vpc_id:																		"vpc-8f8568e7"	=>	"${aws_vpc.my_vpc.id}"	(forces	new	resource)

				

				-/+	aws_vpc.my_vpc	(tainted)

								cidr_block:																"10.0.0.0/16"	=>	"10.0.0.0/16"

								default_network_acl_id:				"acl-a52febcd"	=>	"<computed>"

								default_security_group_id:	"sg-feafde96"	=>	"<computed>"

								dhcp_options_id:											"dopt-b82bc8d1"	=>	"<computed>"

								enable_classiclink:								""	=>	"<computed>"

								enable_dns_hostnames:						"false"	=>	"<computed>"

								enable_dns_support:								"true"	=>	"<computed>"

								instance_tenancy:										"default"	=>	"<computed>"

								main_route_table_id:							"rtb-1913d071"	=>	"<computed>"

You	might	have	noted	already:	in	Terraform	outputs,	-
means	resource	will	be	destroyed,	-/+	means	recreation,	and
+	is	for	creation.

Terraform	has	got	us	covered:	after	recreating	a	VPC,	it	will	also	recreate
a	subnet	because	it	knows	that	a	subnet	depends	on	the	VPC	to	exist.	As
AWS	doesn't	allow	simply	changing	the	VPC	ID	of	an	existing	subnet,
Terraform	will	force	the	creation	of	a	completely	new	subnet.

Which	parameters	the	resource	will	use	depends	on	provider
implementation.	Normally,	it	is	mentioned	in	the	Terraform
documentation	page	for	a	specific	resource.

If	you	try	to	draw	a	graph	again,	you	won't	see	much	difference	from	the
previous	one.	The	special	destroy	nodes	are	not	included	by	default,	and	in
order	to	see	them,	you	need	to	specify	the	-verbose	argument:

$>	terraform	graph	-verbose	|	dot	-Tpng	>	graph.png

As	of	Terraform	version	0.8.2,	the	-verbose	flag	seems	to	be
either	broken	or	temporarily	disabled	and	doesn't	actually
draw	destroy	nodes.	The	source	code	for	this	flag	is	still
there,	deep	inside	Terraform.	The	preceding	diagram	was
generated	with	Terraform	0.7.2.

Now	we	can	see	one	node	of	the	graph	for	the	existing	resource	and
another	node	to	destroy	it.	Nodes	are	added	to	the	graph	in	an	order	that
will	lead	to	the	correct	removal	of	resources	that	need	to	be	removed.

Before	we	finish	with	graphs,	let's	take	a	quick	look	at	how	dependencies
are	specified	inside	the	state	file:

"aws_subnet.public":	{	

				"type":	"aws_subnet",	

				"depends_on":	[

								"aws_vpc.my_vpc"	

],	

					"primary":	{	

					"id":	"subnet-2116e25b",	

					"attributes":	{	

												"availability_zone":	"eu-central-1b",	

												"cidr_block":	"10.0.1.0/24",	

												"id":	"subnet-2116e25b",	

												"map_public_ip_on_launch":	"false",	

												"tags.%":	"0",	

												"vpc_id":	"vpc-8f8568e7"	

								},	

								"meta":	{},	

								"tainted":	false	

						},	

Note	the	depends_on	part	-	Terraform	saves	references	to	resources,	and	this
one	depends	on	inside	this	key.	Most	of	the	time,	dependencies	in
Terraform	just	work.	You	just	need	to	reference	resources	inside	the
template	and	Terraform	will	do	the	job	of	building	a	graph	and	order
operations	with	it.	But,	sometimes,	you	need	a	little	bit	more	control	over
dependencies.

There	is	another	advantage	of	graphs	inside	Terraform	-	they
allow	you	to	process	nodes	in	parallel	if	they	don't	depend	on
each	other.	By	default,	up	to	10	graph	nodes	can	be
processed	in	parallel.	You	could	specify	the	-parallelism	flag
for	apply,	plan,	and	destroy	commands,	but	it's	rather	an
advanced	operation,	and	in	most	cases,	you	don't	need	it.

Controlling	dependencies	with
depends_on	and
ignore_changes
In	99%	of	cases,	Terraform	will	resolve	dependencies	automatically.
There	are	two	problems	you	can	encounter	when	you	rely	solely	on
automatic	resolution:

Dependency	is	not	automatically	handled	by	Terraform

Dependency	leads	to	unwanted	behavior	and	should	be	omitted

For	both	problems,	there	is	a	solution	in	Terraform.	Let's	first	look	at	how
you	can	force	dependencies	with	depends_on.	For	each	resource,	you	can
specify	the	depends_on	parameter,	which	accepts	a	list	of	resources	that	this
resource	depends	on.	As	a	result,	this	resource	won't	be	created	until	the
ones	listed	inside	this	parameter	are	created.

There	might	be	different	use	cases	for	this.	For	example,	your	private
OpenStack	installation	could	be	implemented	in	a	way	such	that	it	is
impossible	to	create	virtual	routers	in	parallel,	so	you	have	to	force
dependency	for	each	router	to	force	Terraform	to	create	them	one	after
another.	Or	your	instances	could	depend	on	the	existence	of	one	central
master	instance	(which	could	be	Chef	server	or	Puppet	master).	Let's
implement	this	scenario	in	our	template.

Add	two	new	resources	to	template.tf:

				resource	"aws_instance"	"master-instance"	{

						ami	=	"ami-9bf712f4"

						instance_type	=	"t2.micro"

						subnet_id	=	"${aws_subnet.public.id}"

				}

				resource	"aws_instance"	"slave-instance"	{

						ami	=	"ami-9bf712f4"

						instance_type	=	"t2.micro"

						subnet_id	=	"${aws_subnet.public.id}"

						depends_on	=	["aws_instance.master-instance"]

				}	

Draw	the	graph:

$>	terraform	graph	|	dot	-Tpng	>	graph.png	

Let's	remove	depends_on	for	the	slave	instance	and	draw	graph	again:

With	depends_on,	all	resources	would	be	created	sequentially.	Without	it,
both	EC2	instances	will	be	created	in	parallel.

Don't	be	too	confused	about	the	root	circle.	We	will	talk
about	what	it	is	in	a	couple	of	minutes.

Now,	let's	say	we	want	to	include	a	private	hostname	of	master	in	the	list	of
tags	of	the	slave,	but	we	don't	want	to	update	it	if	master	was	recreated.	To
achieve	this,	we	will	use	the	ignore_changes	parameter.	This	parameter	is
part	of	lifecycle	block,	responsible	for	a	few	other	create/destroy-related
parameters.	The	ignore_changes	parameter	accepts	the	list	of	parameters	to
ignore	when	updating,	in	our	case	-tags:

resource	"aws_instance"	"slave-instance"	{	

		ami	=	"ami-9bf712f4"	

		instance_type	=	"t2.micro"	

		subnet_id	=	"${aws_subnet.public.id}"	

		tags	{	

				master_hostname	=	"${aws_instance.master-instance.private_dns}"	

		}	

		lifecycle	{	

			ignore_changes	=	["tags"]	

		}	

}	

Run	the	terraform	apply	command,	then	remove	the	tags	parameter	from

the	aws_instance.slave	instance	configuration	and	run	the	terraform	plan
command.	Terraform	will	show	you	that	there	is	nothing	to	do	because	it
was	told	to	ignore	changes	of	the	tags	parameter.

The	most	common	use	case	for	ignore_changes	is,	perhaps,
user_data	for	cloud	instances.	For	most	providers,	if	you
change	user_data	(the	script	to	be	executed	on	instance
creation	by	the	cloud-init	utility),	Terraform	will	try	to
recreate	the	instance.	It	is	often	unwanted	behavior	because,
most	likely,	you	use	the	same	user_data	string	for	multiple
instances	and	you	want	changes	to	be	applied	only	for	new
instances,	while	keeping	the	others	running	(or	by	recreating
them	one	by	one	yourself).

With	depends_on	and	ignore_changes,	you	can	achieve	a	bit	more	flexibility
when	dealing	with	dependencies	inside	Terraform.

There	are	two	other	life	cycle	block	parameters	that	should	be	mentioned:

The	create_before_destroy	Boolean	parameter	allows	us	to	tell
Terraform	to	first	create	a	new	resource	and	then	destroy	the
previous	one	in	the	case	of	recreation.

The	prevent_destroy	parameter,	also	Boolean,	marks	a	resource	as
indestructible	and	can	save	you	some	nerves.	One	example	of	a
resource	that	can	benefit	from	this	option	is	an	Elastic	IP	-	a
dedicated	IP	address	inside	AWS	that	you	can	attach	to	an	EC2
instance.

Making	sense	of	our	template
So	far,	we	have	created	a	VPC	with	a	single	subnet.	While	we	played
around	with	master-slave	instances	and	dependencies	between	them,	these
were	just	temporal	changes	to	show	how	Terraform	handles	these	use
cases.	Now	it's	time	to	add	more	meat	to	the	template:	let's	create	an
instance	with	a	security	group	attached	to	it.

Let's	say	we	have	a	web	application	named	MightyTrousers	and	we	need	a
server	for	this,	protected	from	unwanted	traffic	by	a	security	group:

resource	"aws_security_group"	"allow_http"	{	

		name	=	"allow_http"	

		description	=	"Allow	HTTP	traffic"	

		vpc_id	=	"${aws_vpc.my_vpc.id}"	

	

		ingress	{	

				from_port	=	80	

				to_port	=	80	

				protocol	=	"tcp"	

				cidr_blocks	=	["0.0.0.0/0"]	

		}	

	

		egress	{	

				from_port	=	0	

				to_port	=	0	

				protocol	=	"-1"	

				cidr_blocks	=	["0.0.0.0/0"]	

		}	

}	

	

resource	"aws_instance"	"mighty-trousers"	{	

		ami	=	"ami-9bf712f4"	

		instance_type	=	"t2.micro"	

		subnet_id	=	"${aws_subnet.public.id}"	

		vpc_security_group_ids	=	["${aws_security_group.allow_http.id}"]	

}	

Given	that	we	have	only	a	single	web	application,	our	Terraform	template
would	represent	a	complete	production-ready	template	for	the	whole
infrastructure.	It	handles	dependencies	very	well,	updates	changes,	and	in
general,	solves	the	problem	of	templating	all	used	AWS	services.	The
problem	is	that	a	single	VPC	with	a	single	server	is	probably	the	least
complicated	infrastructure	one	could	imagine.	But	it's	a	good	start.

After	a	little	while,	your	company	grows	beyond	the	original	small	web
application,	of	course.	Developers	have	written	a	new	app,	named
CrazyFoods.	Now	you	need	to	template	it	too.

At	first,	we	will	be	tempted	to	simply	copy	and	paste	the	configuration	of
the	MightyTrousers	application,	replace	some	strings	in	a	few	places,	and
call	it	a	day.	But	soon	we	realize	that	that	wouldn't	be	a	job	well	done:	we
would	have	just	duplicated	a	bunch	of	code	for	no	reason.	As	we	really
want	both	applications	to	have	the	same	setup,	we	now	have	to	make	sure
that	this	huge	new	template	is	properly	updated	in	two	places--once	for	the
MightyTrousers	application	(security	group	+	instance)	and	then	again	for
the	CrazyFoods	app	(also	a	security	group	+	instance).

Wouldn't	it	be	nice	to	reuse	the	existing	configuration	and	update	it	from	a
single	place?	Enter	Terraform	modules.

Removing	duplication	with
modules
Modules	in	Terraform	are	used	to	group	multiple	resources.	You	can
reuse	this	grouping	multiple	times.	You	can	also	configure	modules	with
variables,	and	modules	can	return	output	that	you	can	pass	to	other
resources	and	modules.

To	get	started	with	modules,	create	a	folder	named	modules	in	the	same
folder	as	the	template.tf.	Inside	this	folder,	create	another	one,	named
application.	In	this	folder,	we	will	keep	the	module	responsible	for	creating
all	the	resources	required	by	a	single	application,	be	it	MightyTrousers,
CrazyFoods,	or	anything	else.

A	module	is	a	regular	Terraform	template,	so	just	create	the
./modules/application/application.tf	file	with	the	following	contents:

resource	"aws_security_group"	"allow_http"	{	

		name	=	"allow_http"	

		description	=	"Allow	HTTP	traffic"	

		vpc_id	=	"${aws_vpc.my_vpc.id}"	

		ingress	{	

				from_port	=	80	

				to_port	=	80	

				protocol	=	"tcp"	

				cidr_blocks	=	["0.0.0.0/0"]	

		}	

	

		egress	{	

				from_port	=	0	

				to_port	=	0	

				protocol	=	"-1"	

				cidr_blocks	=	["0.0.0.0/0"]	

		}	

}	

resource	"aws_instance"	"mighty-trousers"	{	

		ami	=	"ami-9bf712f4"	

		instance_type	=	"t2.micro"	

		subnet_id	=	"${aws_subnet.public.id}"	

		vpc_security_group_ids	=	["${aws_security_group.allow_http.id}"]	

}	

Now,	with	this	module	in	place,	let's	actually	call	it	inside	our	template.tf.
Remove	everything	related	to	the	MightyTrousers	application	and	add	the
following	module	configuration:

module	"mighty_trousers"	{	

		source	=	"./modules/application"	

}	

The	name	of	the	module	(mighty_trousers)	is	only	used	to	reference	this
module	in	other	places	in	the	template.	We	can	name	modules	any	way	we
like,	as	long	as	they	are	unique.

Now,	let's	try	to	apply	this	template	as	usual:	terraform	apply:

Error	downloading	modules:	module	mighty_trousers:	not	found,	may	need	to	be	

downloaded	using	'terraform	get'	

Even	though	we	specified	a	source,	Terraform	still	can't	find	our	module.
It	requires	you	to	run	the	terraform	get	command	first.

When	you	run	this	command,	Terraform	downloads	the	module	to	the
.terraform	folder	inside	your	project's	folder.	If	your	module	is	local	to
your	laptop,	Terraform	will	simply	create	a	symlink	from	it	to	the
.terraform	folder.

There	are	other	types	of	sources	for	modules.	You	could	specify	a	Git
repository,	HTTP	URL,	GitHub,	and	BitBucket	links	as	a	module	source.
In	large	organizations,	there	are	probably	many	different	Terraform

modules,	and	it's	convenient	to	store	them	outside	of	project-specific
repository.	Every	time	you	run	the	get	command,	it	will	pull	it	from	the
source	and	save	it	inside	the	.terraform	folder.

Segment.com,	an	analytics	and	data	platform	company,	open
sources	their	Terraform	modules:	https://github.com/segmenti
o/stack.	As	they	claim,	it's	a	set	of	Terraform	modules	to
configure	production	infrastructure	with	AWS.	There	is	also
a	terraform-comunity-modules	GitHub	organization,	https://git
hub.com/terraform-community-modules,	which	has	many	different
modules	you	could	reuse	or	be	inspired	by.	In	future,	as
Terraform	adoption	among	companies	grows,	we	might	see
many	more	open	source,	third-party	reusable,	ready	for
production	modules,	just	as	we	use	Puppet	modules	or	Chef
cookbooks	today.

If	you	run	the	terraform	get	command,	you	will	get	the	following	output
with	errors:

				$>	terraform	get

				Get:	file:///home/kshirinkin/work/packt-terraform-rewrites/modules/application

				Error	loading	Terraform:	module	mighty_trousers.root:	2	error(s)	occurred:

				

				*	resource	'aws_security_group.allow_http'	config:	unknown	resource	'aws_vpc.my_vpc'	referenced	in	variable	aws_vpc.my_vpc.id

				*	resource	'aws_instance.mighty-trousers'	config:	unknown	resource	'aws_subnet.public'	referenced	in	variable	aws_subnet.public.id

This	is	nothing	to	be	surprised	about:	we	blindly	copied	and	pasted	our
MightyTrousers	application	configuration.	This	configuration	references
resources	defined	in	the	main	template.tf.	But	these	resources	are	not
available	inside	the	module	template!	We	need	a	way	to	pass	required
values	down	to	the	module.	Module	variables	are	exactly	what	we	need.

https://segment.com/
https://github.com/segmentio/stack
https://github.com/terraform-community-modules

Configuring	modules
Let's	list	the	data	we	need	to	pass	to	the	module:

Name	of	the	application

VPC	ID

Subnet	ID

That	should	be	sufficient	for	now.	Update	the	module	inside	template.tf	to
look	as	follows:

module	"mighty_trousers"	{	

		source	=	"./modules/application"	

		vpc_id	=	"${aws_vpc.my_vpc.id}"	

		subnet_id	=	"${aws_subnet.public.id}"	

		name	=	"MightyTrousers"	

}	

Passing	data	like	this	is	not	enough	though.	We	need	to	define	variables
inside	the	module	template.	The	thing	is,	our	tempate.tf	is	a	module	itself,
a	special	module	named	root	module.	That's	what	you	saw	on	the	last
graph	we	drew--resources	were	coming	from	the	root	module.	So,	we
were	actually	already	using	modules	all	this	time,	and	every	module,
including	the	root	module,	can	be	configured	with	variables.

We	have	not	looked	much	into	Terraform	variables	in
general	till	now,	and	most	of	the	content	on	this	topic	is
explained	in	Chapter	4,	Storing	and	Supplying	Configuration.
For	now,	let's	get	a	short	introduction	to	them.

Variables	are	defined	with	the	variable	keyboard,	followed	by	the	variable
name	and	optional	default	value	inside	curly	braces:

variable	number_of_servers	{	default	=	1	}	

There	are	many	ways	to	define	variables,	and	there	are	multiple	types	of
variables,	but	let's	save	our	in-depth	exploration	for	the	next	chapter.	For
now,	let's	add	the	following	lines	to	the	top	of	the
./modules/application/application.tf	file:

variable	"vpc_id"				{}	

variable	"subnet_id"	{}	

variable	"name"						{}	

To	use	the	variable,	you	need	to	reference	it	via	a	special	var	keyword,	as
follows:	${var.my_variable}.	Replace	all	the	resource	references	with
variables:

resource	"aws_security_group"	"allow_http"	{	

		name	=	"${var.name}	allow_http"	

		description	=	"Allow	HTTP	traffic"	

		vpc_id	=	"${var.vpc_id}"	

	

		ingress	{	

				from_port	=	80	

				to_port	=	80	

				protocol	=	"tcp"	

				cidr_blocks	=	["0.0.0.0/0"]	

		}		

		egress	{	

				from_port	=	0	

				to_port	=	0	

				protocol	=	"-1"	

				cidr_blocks	=	["0.0.0.0/0"]	

		}	

}		

resource	"aws_instance"	"app-server"	{	

		ami	=	"ami-9bf712f4"	

		instance_type	=	"t2.micro"	

		subnet_id	=	"${var.subnet_id}"	

		vpc_security_group_ids	=	["${aws_security_group.allow_http.id}"]	

		tags	{	

				Name	=	"${var.name}"	

		}	

}	

Now	you	should	be	able	to	run	again	via	the	terraform	get	command:

$>	terraform	get	

Get:	file:///home/kshirinkin/work/packt-terraform-rewrites/modules/application

This	created	a	symlink	to	your	module	inside	the	.terraform	directory:

$>	ls	-la	.terraform/modules	

total	12	

drwxr-xr-x.	2	kshirinkin	kshirinkin	4096	Jan		3	16:08	.	

drwxr-xr-x.	3	kshirinkin	kshirinkin	4096	Jan		3	16:08	..	

lrwxrwxrwx.	1	kshirinkin	kshirinkin			66	Jan		3	16:08	8a6e0ac9202efe2b1f0a69ae2d5138bb	->	/home/kshirinkin/work/packt-terraform-rewrites/modules/application	

You	should	be	able	to	run	the	terraform	apply	command	now.	Let's	add	a
second	module,	just	to	verify	that	we	are	still	doing	things	right:

module	"crazy_foods"	{	

		source	=	"./modules/application"	

		vpc_id	=	"${aws_vpc.my_vpc.id}"	

		subnet_id	=	"${aws_subnet.public.id}"	

		name	=	"CrazyFoods"	

}	

Run	the	terraform	get	and	terraform	plan	commands	to	check	whether
Terraform	will	do	everything	as	expected,	and	pay	attention	to	this	part	of
the	output:

+	module.mighty_trousers.aws_security_group.allow_http	

				description:																										"Allow	HTTP	traffic"	

				name:																																	"MightyTrousers	allow_http"	

For	non-local	modules,	in	order	to	update	the	module,	you
need	to	pass	the	-update	flag	to	the	terraform	get	command:
terraform	get	-update.	Otherwise,	the	latest	version	of	the
module	won't	be	downloaded.

Note	how	the	name	of	the	resource	was	built;	it	includes	the	module	name
and	a	module	keyword.	This	doesn't	mean	that	you	can	reference	this
module	by	this	name	though.	Try	to	do	it	as	follows:

module	"crazy_foods"	{	

		source	=	"./modules/application"	

		vpc_id	=	"${aws_vpc.my_vpc.id}"	

		subnet_id	=	"${aws_subnet.public.id}"	

		name	=	"CrazyFoods	${module.mighty_trousers.aws_security_group.allow_http.id}"	

}	

You	will	get	an	error	saying	*	module.crazy_foods:	missing	dependency:
module.mighty_trousers.output.aws_security_group.allow_http.id.	You	cannot
simply	reference	resources	inside	a	module	from	outside	the	module.	You
have	to	use	outputs.

Retrieving	module	data	with
outputs
Another	useful	construct	that	Terraform	provides	are	outputs.	In	an	output,
you	define	which	data	you	want	to	be	returned	by	the	module.	Add	the
following	line	to	the	very	bottom	of	the
./modules/application/application.tf	file:

output	"hostname"	{	

		value	=	"${aws_instance.app-server.private_dns}"	

}	

Now	you	can	use	this	output	inside	the	template.tf	like	this:

module	"crazy_foods"	{	

		source	=	"./modules/application"	

		vpc_id	=	"${aws_vpc.my_vpc.id}"	

		subnet_id	=	"${aws_subnet.public.id}"	

		name	=	"CrazyFoods	${module.mighty_trousers.hostname}"	

}	

Besides	the	obvious	ability	to	get	data	from	the	module,	there	is	another
use	case	for	module	outputs:	forcing	dependencies.	Here	is	the	graph
before	passing	the	output	to	the	second	module:

Here	is	the	graph	with	dependency	forced:

That's	a	completely	different	level	of	graph-beauty,	I	hope	you	agree.	But
sometimes,	as	we	discussed	previously,	we	have	to	do	it.	For	example,	one
module	creates	a	master	server	and	the	other	one	is	responsible	for	slaves.

Since	Terraform	0.8.0,	you	can	specify	a	module	inside	the	depends_on
attribute.	This	will	result	to	the	resource	dependant	on	all	resources	from
the	module.	Prior	to	0.8.0,	you	have	to	trick	Terraform	to	do	it	with	a
combination	of	outputs	and	other	trickery.	Note	that	Terraform	still	doesn't

allow	a	module	to	depend	on	another	module	directly	via	depends_on--this
attribute	is	not	available	for	modules	whatsoever.

Using	root	module	outputs
We	already	know	that	even	our	template.tf	file	is	a	module,	named	root
module.	And	as	with	any	module,	it	also	has	outputs.	There	is	a	terraform
output	command	that	retrieves	outputs	from	your	configuration.	You	can
use	it	with	modules,	as	well	as	with	the	main	template.	Let's	first	create
our	MightyTrousers	module	with	terraform	apply	(you	can	remove	the
CrazyFoods	module	from	template.tf	for	now,	just	to	avoid	extra	AWS
costs).

After	the	application	is	complete,	run	the	terraform	output	command	with
the	module	name	specified:

$>	terraform	output	-module=mighty_trousers	hostname	

ip-10-0-1-181.eu-central-1.compute.internal	

As	an	exercise,	add	the	output	to	template.tf,	it	will	get	its	value	from	the
module	output,	and	try	to	retrieve	it	by	simply	running	the	terraform	output
hostname.

Outputs	are	a	simple	yet	powerful	way	to	connect	Terraform	with	all	kinds
of	different	tools.	For	example,	you	could	output	a	bastion	host	IP	to	your
test	suite.	We	will	talk	more	about	this	and	other	ways	of	connecting
Terraform	with	other	tools	in	Chapter	5,	Connecting	with	Other	Tools.

Summary
In	this	chapter,	we	learned	a	few	important	concepts	behind	Terraform.
We	now	know	how	Terraform	leverages	the	power	of	graph	theory	to
manage	dependencies	between	resources,	and	saw	how	exactly	it	builds
graphs	via	the	terraform	graph	command.	There	were	many	graphs	to	look
at,	and	with	the	help	of	them,	we	learned	how	Terraform	allows	you	to	add
more	flexibility	to	dependency	handling	via	the	depends_on	and
ignore_changes	parameters.

After	learning	about	this	important	backbone	of	Terraform,	we	started
writing	a	slightly	more	mature	template	and	soon	figured	out	that	it	has
some	issues	with	code	duplication.	Luckily,	we	managed	to	use	Terraform
modules	to	reduce	the	duplication	and,	more	importantly,	we	even	found
out	that	the	very	first	template	we	wrote	was	already	a	module.

We	even	took	a	first	look	at	variables!	But	now,	the	question	is:	how	to
configure	Terraform	modules	and	resources	for	real?	How	to	supply
configuration,	where	is	it	stored,	and	how	to	manage	updates?	These	are
questions	we	will	get	answers	to	in	the	next	chapter.

Storing	and	Supplying
Configuration
So	far,	we	know	how	to	codify	our	infrastructure	into	Terraform	templates
of	varying	sizes.	We	know	how	to	structure	templates	and	how	to	split	and
reuse	them	with	modules.	More	than	this,	we	have	already	figured	out
important	concepts	behind	how	Terraform	works.	But	there	is	an
important	piece	we	have	hardly	looked	at:	configuration.

A	template	with	only	hardcoded	data	in	it	is	a	bad	template.	You	can't
reuse	it	in	other	projects	without	modifying	it.	You	will	always	have	to
update	it	by	hand	if	some	value	changes.	And	you	have	to	store	a	lot	of
information	that	doesn't	really	belong	to	the	infrastructure	template.

In	this	chapter,	we	will	learn	how	to	make	Terraform	templates	more
configurable.	First,	we	will	take	a	lookup	variables	and	all	the	possible
ways	to	use	them.	Then,	we	will	learn	how	to	use	data	resources	to
retrieve	information	from	outside	Terraform	template.	Finally,	we	will	use
built-in	provider's	capabilities	to	generate	random	data,	secrets,	and	config
files.	As	a	bonus,	we	will	also	take	a	very	quick	look	at	another	HashiCorp
tool:	Consul.

Understanding	variables
If	you've	ever	used	any	programming	language,	then	you	might	be	familiar
with	variables	already.	In	most	common	case,	they	allow	you	to	assign	a
value	(a	number	or	string	or	something	else)	to	some	hand-picked	name
and	reference	this	value	by	this	name	inside	your	code.	If	you	need	to
modify	the	value,	then	you	just	need	to	do	it	once,	in	a	place	where
variable	is	defined.

Unlike	in	programming	languages,	variables	in	Terraform	are	more	like
input	data	for	your	templates:	you	define	them	before	using	the	template.
During	the	Terraform	run,	you	have	zero	control	over	variables.	The
values	of	variables	never	change;	you	can't	modify	them	inside	the
template.

In	the	previous	chapter,	we	already	tried	variables	in	order	to	configure
modules.	We	also	learned	that	our	template.tf	is	a	module:	root	module.
Let's	define	some	variables	for	the	root	module.

It	is	a	common	pattern	to	split	variables,	template,	and	outputs	into	three
different	files.	As	you	might	remember,	Terraform	loads	all	files	with	the
.tf	extension	from	the	current	folder,	so	you	don't	need	to	do	any	extra
steps	to	join	these	three	files.	Let's	create	a	new	file	variables.tf	with	the
following	content:

variable	"region"	{}		

Now	let's	use	it	inside	template.tf	to	configure	AWS	provider:

provider	"aws"	{	

		region	=	"${var.region}"	

}	

If	we	would	try	to	apply	or	plan	template	now,	Terraform	would
interactively	ask	us	for	the	value	of	this	variable:

$>	terraform	plan	

var.region	

		Enter	a	value:	

That's	nice	and	sometimes	convenient,	but	in	most	cases,	you	don't	want	to
type	values	of	all	variables	every	time.	Not	only	it's	inconvenient,	but	it
could	also	be	dangerous:	mistyping	a	variable	value	can	lead	to	terrible
consequences.	If	one	of	the	variables	is	used	inside	a	resource	parameter
that	causes	its	recreation,	then	mistyping	it	will	lead	to	accidental	removal
of	the	resource.	Don't	rely	on	the	manual	input	of	configuration	data.

We	could	reduce	the	chances	of	accidental	infrastructure	destruction	by
adding	a	description	to	the	variable:

variable	"region"	{		

		description	=	"AWS	region.	Changing	it	will	lead	to	loss	of	complete	stack."	

}	

Now	the	user	of	the	template	will	see	this	description	when	he	or	she	tries
to	apply	it:

				$>	terraform	plan

				var.region

						AWS	region.	Changing	it	will	lead	to	loss	of	complete	stack.

				

						Enter	a	value:	

It	doesn't	save	us	from	typos	though.	What	would	be	an	even	more	reliable
way	to	protect	the	infrastructure	from	human	mistakes	is	to	have	a	default
value	for	the	variable:

variable	"region"	{		

		description	=	"AWS	region.	Changing	it	will	lead	to	loss	of	complete	stack."	

		default	=	"eu-central-1"	

}	

With	the	default	value	in	place,	Terraform	won't	ask	for	the	value
interactively	anymore.	It	will	pick	default	value	unless	other	sources	of
variables	are	present.

There	are	three	types	of	variables	you	can	set:

the	string	variables	(default	ones)

the	map	variables

the	list	variables

You	can	only	interactively	set	the	string	variables;	for	map	and	list,	you
have	to	use	other	methods,	which	we	will	take	a	look	at	a	bit	later.

Using	map	variables
If	you've	used	maps,	dictionaries,	or	hashes	in	some	programming
language	such	as	Ruby,	then	you	know	what	Map	in	Terraform	is.	Map	is
a	lookup	table,	where	you	specify	multiple	keys	with	different	values.	You
can	then	pick	the	value	depending	on	the	key.	It's	easier	to	understand	it
with	the	example.

At	the	moment	our	MightyTrousers	application	always	uses	the	t2.micro
instance	type.	These	are	cheap	instances	that	are	good	for	quick	tests	and
development,	but	they	are	not	that	great	for	production.	What	we	want,
actually,	is	a	way	to	use	different	instance	types	depending	on	the
environment	stack	is	deployed	to.	Let's	assume	that	we	have	only	three
environments:	dev,	prod,	and	test.

First,	let's	move	variables	out	of	the	modules/application/application.tf	file
to	modules/application/variables.tf.	And	then	let's	define	two	new	variables
there:	environment	and	instance_type.

variable	"environment"	{	default	=	"dev"	}	

variable	"instance_type"	{	

			type	=	"map"	

			default	=	{	

					dev	=	"t2.micro"	

					test	=	"t2.medium"	

					prod	=	"t2.large"	

			}	

}	

We	specified	type	explicitly,	even	though	it's	not	really	required	when	we
have	the	default	value	as	well.	The	default	type	is	string.

What	you	also	need	to	do	is	to	add	variable	"environment"{default	=	"prod"

}	to	the	variables.tf	file	in	the	root	folder	of	our	project.	We	will	use	prod
on	top	level	to	show	that	root	module	variable	value	will	override	the
default	of	module	itself.

Then,	modify	the	module	to	look	as	follows:

module	"mighty_trousers"	{	

		source	=	"./modules/application"	

		vpc_id	=	"${aws_vpc.my_vpc.id}"	

		subnet_id	=	"${aws_subnet.public.id}"

		name	=	"MightyTrousers"	

		environment	=	"${var.environment}"	

}	

Here,	we	pass	a	variable	from	the	root	module	to	the	application	module.
We	don't	need	to	pass	the	instance_type	variable	because	we	will	just	look
at	the	value	we	need	from	the	existing	variable.	To	do	this,	Terraform
provides	the	lookup()	interpolation	function.	This	function	accepts	map	as
the	first	argument,	the	key	to	look	for	in	this	map	as	the	second	argument,
and	an	optional	default	value	as	the	third	argument.	Let's	modify	our
modules/application/application.tf	aws_instance	resource	to	look	as	follows:

resource	"aws_instance"	"app-server"	{	

		ami	=	"ami-9bf712f4"	

		instance_type	=	"${lookup(var.instance_type,	var.environment)}"	

		subnet_id	=	"${var.subnet_id}"	

		vpc_security_group_ids	=	["${aws_security_group.allow_http.id}"]	

		tags	{

				Name	=	"${var.name}"	

		}	

}	

We	did	not	specify	the	default	value	inside	the	lookup()	function;	there	is
already	a	default	on	both	module	and	root	levels.	Let's	run	the	terraform
plan	command	to	see	which	parameters	the	instance	would	get:

				$>	terraform	plan

				<	>

				+	module.mighty_trousers.aws_instance.app-server

								ami:																						"ami-378f925b"

								availability_zone:								"<computed>"

								ebs_block_device.#:							"<computed>"

								ephemeral_block_device.#:	"<computed>"

								instance_state:											"<computed>"

								instance_type:												"t2.large"

								key_name:																	"<computed>"

								network_interface_id:					"<computed>"

								placement_group:										"<computed>"

								private_dns:														"<computed>"

								private_ip:															"<computed>"

								public_dns:															"<computed>"

								public_ip:																"<computed>"

								root_block_device.#:						"<computed>"

								security_groups.#:								"<computed>"

								source_dest_check:								"true"

								subnet_id:																"${var.subnet_id}"

								tags.%:																			"1"

								tags.Name:																"MightyTrousers"

								tenancy:																		"<computed>"

								vpc_security_group_ids.#:	"<computed>"

Indeed	it	took	the	t2.large	instance	type.	Maps	give	you	more	flexibility
compared	with	regular	string	variables.	So	create	lists.

Using	list	variables
Continuing	analogy	with	programming,	list	in	Terraform	is	similar	to
arrays	in	most	programming	languages.	There	is	a	very	nice	place	where
we	can	use	lists	in	our	templates:	security	group.

Currently,	an	application	module	defines	a	single	security	group	and
assigns	it	to	the	instance.	But	an	EC2	instance	can	have	multiple	security
groups	attached.	We	could	have	a	default	security	group	that	allows	an
SSH	access	and	then	on	an	application	level	we	have	another	one	for	app-
specific	permissions.

Let's	add	yet	another	variable	to	module/application/variables.tf,	with	an
empty	list	as	a	default	value:

variable	"extra_sgs"	{	default	=	[]	}	

Now,	let's	define	a	default	security	group	in	template.tf	with	SSH	access
allowed:

resource	"aws_security_group"	"default"	{	

		name	=	"Default	SG"	

		description	=	"Allow	SSH	access"	

		vpc_id	=	"${aws_vpc.my_vpc.id}"	

	

		ingress	{	

				from_port	=	22	

				to_port	=	22	

				protocol	=	"tcp"	

				cidr_blocks	=	["0.0.0.0/0"]	

		}	

}	

	

Now	we	can	pass	it	to	the	module,	wrapping	it	with	square	brackets
(which	means	it's	a	list):

module	"mighty_trousers"	{	

		source	=	"./modules/application"	

		vpc_id	=	"${aws_vpc.my_vpc.id}"	

		subnet_id	=	"${aws_subnet.public.id}"	

		name	=	"MightyTrousers"	

		environment	=	"${var.environment}"	

		extra_sgs	=	["${aws_security_group.default.id}"]	

}	

Now	we	only	need	to	use	this	extra	security	group	ID	together	with	an
app-specific	security	group.	To	achieve	this,	we	will	use	the	concat()
interpolation	function.	This	function	joins	multiple	lists	into	one.	We	also
better	ensure	that	the	resulting	list	doesn't	have	duplicates.	The	distinct()
function	will	help	with	this;	it	removes	all	the	duplicates,	keeping	only	the
first	occurrence	of	each	non-unique	element.	We	will	join	the	extra_sgs	list
with	a	list	made	from	an	app-specific	SG	defined	in	application.tf:

resource	"aws_instance"	"app-server"	{	

		ami	=	"ami-9bf712f4"	

		instance_type	=	"${lookup(var.instance_type,	var.environment)}"	

		subnet_id	=	"${var.subnet_id}"	

		vpc_security_group_ids	=	["${distinct(concat(var.extra_sgs,	aws_security_group.allow_http.*.id

		tags	{	

				Name	=	"${var.name}"	

		}	

}	

The	syntax	might	not	look	obvious	here,	especially	if	you	come	from
programming	background.	It	takes	some	time	to	get	used	to	peculiarities
of	Terraform	DSL.	One	would	expect	that	because	we	have	a	single	app-
specific	security	group,	we	would	simply	wrap	it	with	square	brackets	as
follows:

["${concat(var.extra_sgs,	[aws_security_group.allow_http.id]}"]	

Unfortunately,	it	doesn't	work	like	this.	Internally,	we	defined	that
aws_security_group	is	not	a	single	resource,	but	a	list	consists	of	a	single
resource.	Terraform	doesn't	have	loops.	Instead,	it	has	a	special	syntax	to
iterate	over	the	multiple	resources	with	the	*	symbol.	In	the	background,
we	have	the	following:

aws_security_group.allow_http.*.id		

Terraform	transforms	the	preceding	into	something	similar	to	the
following:

[aws_security_group.allow_http.0.id]	

Let's	say	we	would	have	multiple	groups	that	would	result	in	the
following:

[aws_security_group.allow_http.0.id	..	aws_security_group.allow_http.N.id]	

Here,	N	is	the	number	of	groups.	We	haven't	discussed	how	to	create
multiple	instances	of	the	same	resource	yet,	though.	That's	the	topic	for
another	chapter.

Terraform	language	can	be	very	confusing	at	times.	Since
version	0.8.0,	there	is	a	terraform	console	command,	which
allows	you	to	play	around	with	different	interpolation
functions	and	other	features	in	an	interactive	console.	The
console	itself	is	quite	unpredictable	as	well,	but	you	should
expect	it	to	become	more	useful	over	time.

Both	map	and	list	allow	building	complex	though	sometimes	not	obvious

constructions	around	Terraform	variables	via	various	interpolation
function's	usage.	But	so	far,	we	have	still	defined	our	variables	only	via
default	values.	It's	time	to	figure	out	how	to	do	it	differently.	First,	let's
learn	how	to	provide	variable	values	inline	with	Terraform	commands
invocation.

Supplying	variables	inline
The	easiest	(after	interactive	mode)	way	to	set	variable	values	is	to	specify
them	as	an	argument	to	Terraform	command.	It's	done	with	the	multiple	-
var	arguments	to	the	command	with	the	name	and	value	of	the	variable
following:

$>	terraform	plan	-var	'environment=dev'

Note	how	instance	type	of	the	EC2	server	is	different	because	we	set	the
variable	environment	to	dev.

So	far,	we	don't	have	any	map	or	list	variables	for	the	root	module.	Let's
add	a	list	of	CIDR	blocks	that	are	allowed	to	access	default	security	group
via	SSH.	Also,	let's	add	map	with	CIDR	blocks	for	our	subnets.	We	will
have	two	blocks:	for	private	and	for	public	subnets	accordingly.	In	the
end,	variables.tf	should	look	as	follows:

variable	"region"	{	

		description	=	"AWS	region.	Changing	it	will	lead	to	loss	of	complete	stack."	

		default	=	"eu-central-1"	

}	

variable	"environment"	{	default	=	"prod"	}	

variable	"allow_ssh_access"	{	

		description	=	"List	of	CIDR	blocks	that	can	access	instances	via	SSH"	

		default	=	["0.0.0.0/0"]	

}	

variable	"vpc_cidr"	{	default	=	"10.0.0.0/16"	}		

variable	"subnet_cidrs"	{	

		description	=	"CIDR	blocks	for	public	and	private	subnets"	

		default	=	{	

				public	=	"10.0.1.0/24"	

				private	=	"10.0.2.0/24"	

		}	

}	

As	an	exercise,	make	use	of	these	new	variables	yourself	with	the	help	of
the	lookup()	function.

If	we	tried	to	supply	the	allow_ssh_access	variable	via	command	line,	it
would	look	like	this:

$>	terraform	plan	-var	'allow_ssh_access=["52.123.123.123/32"]'

If	we	needed	to	change	CIDR	blocks'	map,	then	we	could	do	it	as	follows:

$>	terraform	plan	-var	'subnet_cidrs={public	=	"172.0.16.0/24",	private	=	"172.0.17.0/24"}'

Setting	variables	via	CLI	arguments	can	be	useful	sometimes:	to	provide	a
password	for	some	service	or	to	tweak	some	values	for	development
purposes.	But	it	is	in	no	way	a	reliable	and	production-ready	storage.
There	is	a	better	option:	environment	variables.

Using	Terraform	environment
variables
The	third	way	(after	interactive	input	and	inline	arguments)	to	supply
values	to	your	variables	is	to	use	environment	variables.

The	environment	variables	are	part	of	the	environment
where	process	is	running	and	the	program	can	access	them.
There	are	always	some	environment	variables	already	set;
for	example,	$PATH	defines	paths	where	your	shell	will	look
for	executables.	You	can	get	a	list	of	currently	set
environment	variables	with	the	env	command	on	*nix
operating	systems.

Terraform	will	automatically	read	all	environment	variables	with	the
TF_VAR_	prefix.	For	example,	to	set	value	for	the	region	variable,	you	would
need	to	set	the	TF_VAR_region	environment	variable.

There	are	multiple	ways	to	set	environment	variables.	You	could	do	it
inline	with	your	terraform	command	execution,	as	follows:

$>	TF_VAR_region=eu-central-1	terraform	plan

But	that's	not	much	different	from	setting	variables	with	the	-var	argument.
Alternatively,	you	could	set	them	once	in	your	terminal:

				$>	export	TF_VAR_subnet_cidrs='{public	=	"172.0.16.0/24",	private	=	"172.0.17.0/24"}'

				$>	terraform	plan

This	would	set	the	variable	value	for	the	current	terminal	session.	You

could	unset	it	with	the	unset	command:

				$>	unset	TF_VAR_subnet_cidrs

It	might	be	tempting	to	set	all	variables	with	export,	but	it	can	cause	some
problems:	you	don't	have	an	easy	overview	of	which	variable	has	which
value.

A	quick	way	to	check	which	terraform	variables	are	defined
via	environment	variables	on	*nix	operating	systems	is	to
run	env	|	grep	"TF_VAR".

Of	course,	you	could	store	your	environment	variables	inside	a	text	file
and	source	it.	Create	a	file	vars	with	the	following	contents:

export	TF_VAR_subnet_cidrs='{public	=	"172.0.16.0/24",	private	=	"172.0.17.0/24"}'	

export	TF_VAR_region=eu-central-1	

Then,	source	this	file	to	make	it	available	in	your	environment:

$>	source	vars

$>	terraform	plan

This	approach	still	doesn't	prevent	you	from	reassigning	an	environment
variable	by	accident.	Once	again,	environment	variables	are	good	for
development,	but	it's	not	the	best	solution	yet.	An	even	better	way	is	to	use
variable	files.

Using	variable	files
When	running	Terraform	commands,	you	can	optionally	supply	a	variable
file	via	the	-var-file	argument.	The	syntax	of	these	files	is	the	good	old
HCL,	familiar	to	you	from	Terraform	templates	themselves.	Create	a	new
file	named	development.tfvars	and	set	your	variables	there:

region	=	"eu-central-1"	

vpc_cidr	=	"172.0.0.0/16"	

subnet_cidrs	=	{	

		public	=	"172.0.16.0/24"	

		private	=	"172.0.17.0/24"	

}	

To	use	it,	run	terraform	plan	command	with	-var-file	argument:

$>	terraform	plan	-var-file=./development.tfvars	

It's	much	more	reliable	to	use	variable	files	for	production	stacks:	you
always	know	which	values	are	there	and	you	can	store	them	in	version
control.	And	for	sensitive	things,	such	as	a	personal	password	to	access	the
cloud	account,	you	would	still	use	environment	variables	or	inline
arguments.

In	Chapter	7,	Collaborative	Infrastructure,	we	will	discuss
better	ways	to	deal	with	sensitive	data.

To	go	one	step	even	further,	you	could	remove	all	defaults	from
variables.tf	and	set	them	only	in	the	variable	file,	to	completely	eliminate
configuration	from	your	template.

You	could	supply	multiple	variable	files,	with	the	ones
defined	later	taking	precedence	over	the	ones	defined	earlier.

Variables	are	the	first-class	configuration	in	Terraform.	With	a	set	of
simple	but	flexible	ways	to	use	and	set	them,	you	have	a	full	control	over
how	to	create	your	environment.	For	production	use,	variable	files	are	a
must.	You	can	write	them	yourself	or	use	a	script	that	fetches	remote	data
and	generates	a	variable	file.

Variables	are	not	the	only	source	of	configuration	though.	Since
Terraform	0.7,	there	are	data	sources	as	well.	Let's	take	a	look	at	why	and
how	we	can	use	them.

Configuring	data	sources
Data	sources	are	very	similar	to	regular	resources.	The	main	difference	is
that	they	are	read-only.	You	can't	always	(actually,	far	from	it)	have	the
complete	infrastructure	in	your	Terraform	templates.	It	is	often	the	case
that	some	resources	already	exist	and	you	don't	have	much	control	over
them.	You	still	need	to	use	them	inside	your	Terraform	templates,	though.
That's	when	data	sources	become	handy.

In	the	Terraform	documentation	for	each	provider,	there	is	a	list	of	data
sources	(if	any	are	available).	They	are	configured	almost	the	same	as
regular	resources,	with	some	differences.

Let's	try	them	out	in	our	template.	There	is	a	feature	named	VPC	Peering
in	AWS.	It	allows	the	connection	of	two	different	VPCs	in	a	way	that
instances	inside	both	can	talk	to	each	other.	We	could	have	a	VPC
provided	by	another	team,	responsible	for	management	layer	for	our
infrastructure	(artifacts	storage,	DNS,	and	so	on).	In	order	to	access	it
from	VPC	we	created	with	Terraform,	we	need	to	set	up	peering.

You	could	peer	VPCs	in	two	different	AWS	accounts.	But	we
will	peer	two	VPCs	in	a	single	AWS	account	for
demonstration	purposes.

First,	create	a	new	VPC	manually	via	AWS	management	console	as
shown	in	the	following	screenshot:

Then	copy	the	ID	of	following	VPC:

Now	we	are	ready	to	use	VPC	data	source.	Add	it	to	your	template,	before
creating	our	old	VPC:

data	"aws_vpc"	"management_layer"	{	

		id	=	"vpc-c36cbdab"		

}	

Of	course,	you	need	to	replace	VPC	ID	with	the	one	you've	created
manually.	Now	we	can	create	a	peering	connection	between	manually-
created	VPC	and	Terraform-created	VPC:

data	"aws_vpc"	"management_layer"	{	

		id	=	"vpc-c36cbdab"	

}	

	

resource	"aws_vpc"	"my_vpc"	{	

		cidr_block	=	"${var.vpc_cidr}"	

}	

	

resource	"aws_vpc_peering_connection"	"my_vpc-management"	{	

		peer_vpc_id	=	"${data.aws_vpc.management_layer.id}"	

		vpc_id	=	"${aws_vpc.my_vpc.id}"	

		auto_accept	=	true	

}	

Data	sources	are	referenced	with	the	data	keyword	in	front	of	resource
name.

That's	not	the	most	sophisticated	example	of	data	sources,	as	you	might
have	noted:	we	could	simply	use	management	layer	VPC	ID	directly,
without	data	sources	at	all.	There	is,	perhaps,	a	better	example:	fetching
AMI	ID's	via	data	source.

AMI	(Amazon	Machine	Image)	is	an	image	format	used	on	AWS.	It's	a
starting	point	for	each	EC2	instance.	There	are	many	publicly	available
AMIs	for	different	operating	systems,	sometimes	with	software	already
preinstalled	and	preconfigured	(such	as	Wordpress).

AWS	users	can	create	their	own	AMIs	with	the	process	widely	named	as
image	baking.	The	simplest	way	to	bake	an	image	is	first	to	create	a	new
instance	from	existing	AMI,	then	configure	it	(manually	or	with	some
configuration	management	tool)	and	make	a	new	AMI	out	of	this	instance.

Some	companies	take	this	process	to	extreme	levels	by	baking	tons	of
AMIs	every	day	and	recreating	existing	instances	with	new	AMIs,	instead
of	performing	in-place	upgrades.	This	approach	enables	you	to	achieve	so-
called	immutable	infrastructure,	where	you	never	touch	a	running	server
at	all	and	each	update	is	performed	by	recreating	an	instance.	We	will
learn	how	to	create	an	immutable	infrastructure	with	Terraform	in	Chapter	
6,	Scaling	and	Updating	Infrastructure.

HashiCorp	tools,	including	Terraform,	are	often	built	with	immutable
infrastructure	approach	in	mind.	Packer,	another	product	of	this	company,
is	focused	exactly	on	creating	images	for	multiple	platforms.	We	are	going
to	discuss	how	to	orchestrate	these	kind	of	upgrades	with	Terraform	in	a
later	chapter.	But	in	this	chapter,	let's	use	AMI	data	source	inside
application	module	to	fetch	an	AMI	for	our	EC2	instance:

data	"aws_ami"	"app-ami"	{	

		most_recent	=	true	

		owners	=	["self"]	

}	

	

resource	"aws_instance"	"app-server"	{	

		ami	=	"${data.aws_ami.app-ami.id}"	

		instance_type	=	"${lookup(var.instance_type,	var.environment)}"	

		subnet_id	=	"${var.subnet_id}"	

		vpc_security_group_ids	=	["${concat(var.extra_sgs,	aws_security_group.allow_http.*.id)}"]	

		tags	{	

				Name	=	"${var.name}"	

		}	

}	

This	code	will	pull	most	recently	created	AMI	from	the	AWS	account
used	for	Terraform	runs.	We	don't	even	need	to	know	the	ID;	it	will	be
retrieved	automatically.	For	sure	we	shouldn't	fetch	most	recent	AMI	all
the	time,	but	it	can	break	the	environment	if	most	recent	AMI	is	wrong.
But	then,	of	course,	Terraform	allows	you	to	be	more	specific	about	which
AMI	to	fetch	using	filters	and	regular	expressions	inside	this	data	source.
We	will	omit	the	usage	of	them	and	leave	it	as	an	exercise.

Data	sources	are	relatively	new	concept	in	Terraform,	and	there	are	still
not	that	many	of	them,	especially	for	third-party	providers,	developed	by
community.	Some	of	data	sources	might	look	almost	useless,	whereas
others	provide	a	handy	way	to	retrieve	remote	data	to	use	inside	the
template.

There	are	two	particularly	useful	data	sources	that	needs	further
discussion:

template_file

external_file

Providing	configuration	with
template_file
It's	not	an	unusual	situation	when	you	need	to	provide	long-form	non-
Terraform-specific	text	configuration	to	your	Terraform	templates.	On
many	occasions,	you	need	to	pass	to	Terraform	a	bootstrap	script	for	your
virtual	machines,	or	upload	large	file	to	S3,	or,	another	example,	configure
IAM	policies.

Sometimes,	these	files	are	static,	that	is,	you	don't	need	to	change	anything
inside	them,	you	just	need	to	read	their	contents	inside	Terraform
template.	For	this	use	case,	there	is	a	file()	function.	You	pass	a	relative
path	to	your	file	as	an	argument	to	this	function,	and	it	will	read	its
contents	to	whatever	place	you	need.

Let's	use	this	function	to	upload	a	public	SSH	key	to	EC2.	Add	the
following	snippet	to	template.tf,	right	before	an	application	module:

resource	"aws_key_pair"	"terraform"	{	

		key_name	=	"terraform"	

		public_key	=	"${file("./id_rsa.pub")}"	

}	

You	need	to	either	copy	existing	public	key	to	your	working	directory	or
generate	new	one	with	the	ssh-keygen	command.	As	an	exercise,	use	this
key	pair	when	creating	an	application	EC2	instance	in	order	to	get	SSH
access	to	it	with	your	private	key.

If	you	are	a	heavy	IAM	user,	then	you	might	want	to	create	extra	directory
policies	in	your	Terraform	directory,	where	you	could	store	all	your	json
definitions	of	policies.	Then,	creating	a	policy	could	look	as	simple	as:

resource	"aws_iam_role_policy"	"s3-assets-all"	{	

		name	=	"s3=assets@all"	

		role	=	"${aws_iam_role.app-production.id}"	

		policy	=	"${file("policies/s3=assets@all.json")}"	

}	

AWS	doesn't	provide	a	convenient	way	to	reuse	and	version	policies.	With
Terraform,	you	can	easily	have	both.

As	mentioned	in	Chapter	1,	Infrastructure	Automation,	it	is
critical	to	have	a	solid	naming	scheme	for	everything	you	do
in	the	cloud.	In	the	earlier	S3	policy	snippet,	one	possible
naming	scheme	is	used:	policy	name	is	built	as
${service_name}=${resource_name}@${action_name}.	This	makes
the	whole	policies	usage	much	cleaner.

Static	files	as	a	preceding	public	key	example	are	common,	but
sometimes,	you	need	more	control	over	the	contents	of	your	files.
Terraform	provides	the	template_file	data	source,	responsible	for	rendering
text	templates.	It's	really	useful	for	bootstrap	scripts,	such	as	the	ones	you
provide	to	cloud-init.

So	far,	we	haven't	done	much	of	configuration	of	the	EC2	instance	we've
created.	Let's	install	some	packages	on	it	and	then	configure	additional
DNS	server.	We	will	set	a	DNS	server	as	a	variable	for	a	root	module	and
pass	it	down	to	the	application	module.	We	will	also	add	an	extra	variable
for	packages	to	be	installed	for	this	module.

First,	let's	define	new	variables	in	variables.tf:

variable	"external_nameserver"	{	default	=	"8.8.8.8"	}	

variable	"extra_packages"	{	

		description	=	"Additional	packages	to	install	for	particular	module"	

		default	=	{	

				MightyTrousers	=	"wget	bind-utils"	

		}	

}	

Note	how	map	is	used	here:	one	key	per	specific	application.	There	is	no
way	in	Terraform	to	pass	variables	directly	to	modules.	If	you	want	to
configure	something	in	module,	you	need	to	define	similar	variable	for	the
root	module	and	then	pass	it	to	the	module.	Unfortunately,	this	means	that
you	need	to	duplicate	every	variable:	once	in	the	root	module,	and	then	in
the	module	you	want	to	configure.

The	problem	comes	when	you	reuse	the	same	module	multiple	times,	for
example,	to	set	up	multiple	different	applications.	In	this	case,	multiple
approaches	can	be	used.	You	could	prefix	a	variable	name	with	a	module
instance	name:

variable	"mighty_trousers_extra_packages"	{	}	

Or	you	could	use	maps	and	then	lookup	value	you	need.	Using	maps
provides	better	grouping	of	variables,	and	it's	easier	to	set	default	value:

variable	"extra_packages"	{	

		description	=	"Additional	packages	to	install	for	particular	module"	

		default	=	{	

				base	=	"wget"	

				MightyTrousers	=	"wget	bind-utils"	

		}	

	}	

Then,	when	you	pass	this	variable	to	module,	you	can	always	fall	back	to
default:

"${lookup(var.extra_packages,	"my_app",	"base")}

Let's	pass	the	add	variables	to	the	module	at	the	bottom	of	the
modules/application/variables.tf	file:

variable	"extra_packages"	{}	

variable	"external_nameserver"	{}	

At	this	point,	it	might	be	unclear	when	and	where	to	specify	default	values
for	variables.	We	did	specify	them	in	a	root	module,	but	did	not	do	it	in
application	module.	If	we	always	pass	variables	from	the	top	level	to	the
module	level,	then	there	is	no	real	need	for	defaults	on	the	module	level;
defaults	from	the	top	will	set	values	for	the	module.	But	if	in	some	cases,
we	do	not	pass	variables	to	module	from	the	root	module,	then	defaults	for
module	variables	are	required.	It	depends	on	how	you	use	and	configure
your	modules.

In	general,	when	it	comes	to	configuring	modules,	current	Terraform	APIs
to	do	it	can	seem	a	bit	fragile	and	inflexible.	You	can	easily	end	up	with
lots	of	duplication	and	a	bit	of	a	mess	when	it	comes	to	finding	the	source
of	truth	for	variable	values.	It	might	become	more	robust	in	future
Terraform	releases,	of	course.	But	as	of	version	0.8,	one	needs	to	take
these	limitations	into	consideration.

We	are	finally	ready	to	use	template	file	data	source.	Add	it	to
modules/application/application.tf:

data	"template_file"	"user_data"	{	

		template	=	"${file("${path.module}/user_data.sh.tpl")}"	

	

		vars	{	

				packages	=	"${var.extra_packages}"	

				nameserver	=	"${var.external_nameserver}"	

		}	

}	

The	template_file	allows	the	passing	of	variables	to	the	file,	thus	giving
you	a	chance	to	configure	this	file	with	some	specific	values.	The	file
itself	is	specified	as	a	template	parameter.	Note	the	use	of	${path.module}:	by
default	path	will	be	relative	to	the	root	template	files.	${path.module}	allows
you	to	use	the	path	to	the	module	folder	without	guessing	it.

Create	a	file	modules/application/user_data.sh.tpl	with	the	following
content:

#!/usr/bin/bash

yum	install	${packages}	-y

echo	"${nameserver}"	>>	/etc/resolv.conf

Variables	inside	template	files	are	used	pretty	much	the	same	way	they	are
used	in	Terraform	templates.	You	need	to	be	careful,	though:	dollar	sign	is
used	in	both	Terraform	and	regular	bash	scripts.	Sometimes,	you	will	have
to	escape	the	dollar	sign,	so	Terraform	doesn't	try	to	interpolate	it	and
therefore	doesn't	fail.	Escaping	is	done	simply	by	duplicating	dollar	sign:
$$.

Finally,	let's	render	this	template	file	as	a	user	data	for	the	instance:

resource	"aws_instance"	"app-server"	{	

		ami	=	"${data.aws_ami.app-ami.id}"	

		instance_type	=	"${lookup(var.instance_type,	var.environment)}"	

		subnet_id	=	"${var.subnet_id}"	

		vpc_security_group_ids	=	["${concat(var.extra_sgs,	aws_security_group.allow_http.*.id)}"]	

		user_data	=	"${data.template_file.user_data.rendered}"	

		tags	{	

				Name	=	"${var.name}"	

		}	

}	

Now,	if	we	got	the	script	right,	after	EC2	instance	will	be	created,	cloud-
init	will	run	this	script	and	extra	packages	and	the	new	external	nameserver
will	be	configured.

Changing	user_data	normally	leads	to	resource	recreation.	We	don't	really
want	our	server	to	be	destroyed	when	this	file	changes.	Let's	revise	what
we	learned	in	previous	chapter	about	life	cycle	block	and	tell	the	instance
to	ignore	changes	of	user_data:

lifecycle	{	

		ignore_changes	=	["user_data"]	

}	

Template	files	provide	an	easy	way	to	generate	bigger	configuration	files
that	can	later	be	reused	in	order	to	set	up	the	machines,	external	services,
and	so	on.	For	cloud-init,	use-case	Terraform	also	provides	the
template_cloud_init_config	resource	that	renders	multipart	cloud-init	config
from	source	files.

A	template	file	is	not	the	only	provider	that	is	useful	for	configuration
purposes.	Let's	take	a	quick	look	at	few	other	resources	that	Terraform
provides.

Providing	data	from	anywhere
with	external_data
As	of	Terraform	0.8,	there	is	also	an	external_data	resource.	It	allows	us	to
call	any	other	program	and	use	the	data	returned	by	it,	as	long	as	it
implements	a	specific	protocol.	The	main	requirement	for	this	program	is
that	it	returns	a	valid	JSON	as	a	result	of	execution.	Create	the	following
tiny	Ruby	script	in	the	root	template	directory:

require	'json'	

data	=	{	

		owner:	"Packt"	

}	

puts	data.to_json	

You	need	to	have	Ruby	installed	for	this	to	work.

Now	configure	external	data	resource	as	follows:

data	"external"	"example"	{	

		program	=	["ruby",	"${path.module}/custom_data_source.rb"]	

}	

Finally,	use	it	inside	the	module	to	extend	its	name	attribute:

module	"mighty_trousers"	{	

		source	=	"./modules/application"	

		vpc_id	=	"${aws_vpc.my_vpc.id}"	

		subnet_id	=	"${aws_subnet.public.id}"	

		name	=	"MightyTrousers-${data.external.example.result.owner}"	

		#	...	

}	

As	you	see,	you	can	access	any	JSON	object	key	via	the	result	attribute	of
external	data	source.	As	of	Terraform	version	0.8.2,	it	is	not	possible	to
use	nested	keys	from	the	result,	it	is	limited	to	the	flat	objects.

An	external	data	source	is	an	extremely	powerful	resource.	Essentially,	it
allows	you	to	connect	absolutely	any	data	source	to	your	Terraform
templates	-	third	party	APIs,	SQL	databases,	NoSQL	databases,	you	name
it.	You	just	need	to	implement	a	tiny	wrapper	between	Terraform	and	this
data	source	to	comply	with	what	Terraform	expects.	You	could	even
connect	Terraform	to	the	data	storage	of	your	configuration	management
tool,	be	it	Puppet	Hiera,	Puppet	DB,	or	Chef	APIs.

Note,	though,	that	using	this	resource	you	need	to	ensure	that	every
machine	that	uses	this	template	has	all	the	software	used	inside	external
data	source	program	-	Terraform	won't	do	that	for	you.	In	the	previously
mentioned	example,	you	need	to	make	sure	that	Terraform	users	have
Ruby	installed.	That's	also	the	reason	why	Terraform	Enterprise	can't
guarantee	that	your	template	will	work	well	when	it	has	this	data	source;
you	cannot	expect	Terraform	Enterprise	to	have	any	extra	software
installed.

Remove	the	external	data	source	from	our	root	template.	There	are	some
more	resources	that	give	you	a	bit	more	flexibility	in	terms	of	configuring
your	templates.	Let's	explore	them.

Exploring	Terraform
configuration	resources
Quite	frequently,	you	will	require	some	random	data	to	be	generated.	This
could	be	default	password	for	a	database	or	a	random	hostname	for	your
servers.	Terraform	has	random	provider	that	solves	this	problem.

Of	course,	completely	random	values	are	harmful	for	Terraform.	That's
why,	the	random_id	resource	generates	random	string	only	on	creation	and
then	value	is	kept	during	updates	(unless	you	change	the	configuration	of
this	resource).	Imagine	that	we	want	to	pass	random	hostname	to	the
previously	configured	template_file	user	data.	We	could	do	it	as	follows:

resource	"random_id"	"hostname"	{	

		byte_length	=	4	

}	

data	"template_file"	"user_data"	{	

		template	=	"${file("${path.module}/user_data.sh.tpl")}"	

		vars	{	

				packages	=	"${var.extra_packages}"	

				nameserver	=	"${var.external_nameserver}"	

				hostname	=	"${random_id.hostname.b64}"	

		}	

}	

Then,	the	actual	script	can	use	the	hostname	variable	to	set	the	hostname	of
the	machine.	If	you	want	to	have	more	control	over	when	exactly	random_id
is	recreated	(and	thus	value	is	regenerated),	then	you	can	specify	keepers
parameter.	keepers	are	stored	in	map,	and	when	value	of	one	of	the	keys	is
changed,	then	random	value	is	regenerated.	For	example,	take	a	look	at	the
AMI	ID	keepers:

resource	"random_id"	"hostname"	{	

		keepers	{	

				ami_id	=	"${data.aws_ami.app-ami.id}"		

		}	

		byte_length	=	4	

}	

Thus,	if	new	AMI	is	there,	then	instance	will	be	recreated	and	new
hostname	will	be	required.

In	addition,	there	is	a	random_shuffle	resource	that	will	return	a	randomly
ordered	list	of	items	from	the	original	list	you	provided.	You	could	even
use	it	together	with	the	hostname	generator	we	saw	in	the	preceding
example:

resource	"random_shuffle"	"hostname_creature"	{	

		input	=	["griffin",	"gargoyle",	"dragon"]	

		result_count	=	1	

}	

resource	"random_id"	"hostname_random"	{	

		byte_length	=	4	

}	

data	"template_file"	"user_data"	{	

		template	=	"${file("${path.module}/user_data.sh.tpl")}"	

	

		vars	{	

				packages	=	"${var.extra_packages}"	

				nameserver	=	"${var.external_nameserver}"	

				hostname	=	"${random_shuffle.hostname_creature.result[0]}${random_id.hostname.b64}"	

		}	

}	

That's	the	complete	random	hostnames	generator	in	a	handful	of	lines	of
code	right	there!

Another	important	Terraform	provider	we	will	most	probably	requires	is	a
TLS	provider.	The	resources	of	this	provider	are	used	to	generate
Transport	Layer	Security	keys	and	certificates.	It's	a	very	handy	way	to

generate	few	secret	keys	though	you	must	keep	in	mind	that	they	will	end
up	in	your	state	file.	Because	of	this,	Terraform	authors	themselves	do	not
recommend	using	it	for	production	deployment

There	are	four	resources	you	can	use,	as	follows:

tls_private_key

tls_self_signed_cert

tls_locally_signed_cert

tls_cert_request

Their	usage	is	well-documented	in	official	Terraform	documentation;	let's
just	take	a	look	at	simplest	one:

resource	"tls_private_key"	"example"	{	

				algorithm	=	"ECDSA"	

				ecdsa_curve	=	"P384"	

}	

It	will	generate	both	private	and	public	key	and	you	could	use	it	to	get	an
initial	SSH	connection	to	the	server.

As	we	know,	the	number	of	providers	and	resources	in	Terraform	is
growing	fast	and	not	all	of	them	are	purely	external	service	providers.
There	is	a	still	small	set	of	useful	providers	to	generate	some	data.	There
are	not	that	many	ways	to	attach	more	powerful	configuration	stores,
though.	Well,	except	for	the	one:	Consul.

Taking	a	quick	look	at	Consul
If	we	just	count	stars	on	GitHub,	then	Consul	is	probably	the	most	popular
HashiCorp	tool.	It's	one	of	the	few	service	discovery	tools	on	the	market
and	probably	the	only	one	that	can	be	considered	modern.	The	closest
alternatives	are	ZooKeeper	and	etcd.	ZooKeeper	is	known	for	being	hard
to	set	up	and	maintain	and	for	being	kind	of	too	slow	(written	in	Java)	and
old	already	(and	you	don't	want	to	use	anything	older	than	few	years	these
days,	do	you?).	The	etcd,	though,	is	a	very	popular	choice,	lacks	most	of
the	features	required	for	service	discovery,	and	is	just	a	storage	rather	than
a	complete	solution.

Consul	is	both	service	discovery	tool	and	a	key/value	storage.	You	need	to
install	Consul	agent	on	each	node	in	order	to	get	it	working.	As	Consul	is
written	in	Go,	the	installation	is	not	very	complex:	drop	the	binary	and	few
configuration	files	to	the	server	and	configure	system	service	(systemd,
upstart	or	whatever	you	prefer)	to	run	it.	No	other	prerequisites	are
required.	In	addition,	you	need	to	have	multiple	Consul	masters:	each
Consul	agent	will	join	the	Consul	cluster	by	connecting	to	each.

Once	you	have	a	cluster	running,	you	can	define	services	on	your	nodes
via	simple	JSON	configuration.	For	each	service,	there	could	be	health
checks,	making	sure	that,	for	example,	database	is	still	available	at	a
certain	port.	There	is	also	a	way	to	trigger	events	inside	Consul	cluster,
there	is	an	API	to	access	Consul,	and,	most	importantly,	all	of	this	is
baked	by	key/value	store	and	gossip	protocol	(provided	by	Serf--backbone
of	Consul	and	also	a	tool	from	HashiCorp).	All	these	things	together	allow
you	to	build	systems	that	react	to	changes	very	quickly	and	that	are	easily
discoverable.	Consul	can	even	replace	internal	DNS	because	it	has	a	DNS
server	built	in.

Actually,	Consul	has	many	features	and	different	usecases,
and	this	fact	kind	of	violates	HashiCorp	philosophy	of

buildings	tools	that	solve	one	problem	and	solve	it	very	well.
But	in	this	case,	being	an	exception	is	good	because	all
Consul	features	fit	really	nicely	together	and	managing	them
as	separate	utilities	would	be	rather	inconvenient.	Achieving
the	same	result	with	etcd,	for	example,	would	require	a
couple	of	extra	tools,	at	least.

Consul	might	not	be	the	most	sophisticated	data	storage,	especially	for
huge	amounts	of	data.	But	it	is	perfect	for	small	sets	of	configuration,	such
as	aforementioned	services	and	health	checks.	You	can	easily	write	your
own	data	to	this	storage,	via	API,	for	example.

If	you	are	using	both	Terraform	and	Consul,	it	makes	a	lot	of	sense	to
connect	them	together.	There	is	a	Consul	provider	for	Terraform	that
allows	you	to	create	Consul	services,	nodes,	keys,	and	so	on.	More
importantly,	it	has	a	data	source	consul_keys.	With	this	data	source,	you	can
fetch	any	data	from	your	Consul	cluster,	which	means	that	you	get	a	real
data	backend	for	your	templates.	It's	up	to	you	what	you	are	going	to	store
there	and	how	you	are	going	to	use	it,	but	here	are	few	examples:

AMI	IDs	for	a	particular	instance	type	(app-a	AMI,	db	AMI,	and	so
on)

Retrieve	a	list	of	nodes	to	be	load	balanced	with	Elastic	Load
Balancer

Find	the	database	replica	for	a	particular	AWS	region

We	are	not	going	to	set	up	the	complete	Consul	cluster	as	it	is	really	out	of
scope	of	this	book.	Nevertheless,	let's	look	at	a	small	example	of	using
consul_keys	to	set	the	AMI	instead	of	using	data	source	for	AMI:

provider	"consul"	{	

				address	=	"consul.example.com:80"	

				datacenter	=	"frankfurt"	

}	

data	"consul_keys"	"amis"	{	

				#	Read	the	launch	AMI	from	Consul	

				key	{	

								name	=	"mighty_trousers"	

								path	=	"ami"	

				}	

}	

resource	"aws_instance"	"app-server"	{	

		ami	=	"${consul_keys.amis.var.mighty_trousers}"	

		instance_type	=	"${lookup(var.instance_type,	var.environment)}"	

		subnet_id	=	"${var.subnet_id}"	

		vpc_security_group_ids	=	["${concat(var.extra_sgs,	aws_security_group.allow_http.*.id)}"]	

		user_data	=	"${data.template_file.user_data.rendered}"	

		tags	{	

				Name	=	"${var.name}"	

		}	

}	

Consul	is	a	powerful	data	backend	for	Terraform	and,	also	being	a	product
of	HashiCorp,	they	are	more	likely	to	work	nicely	together.	Consul	can
also	be	used	as	storage	for	state	files,	which	we	will	discuss	in	later
chapters.	Other	data	backends	might	(and	probably	will)	appear	in	future,
but	we	should	seriously	consider	Consul	at	least	because	of	it	being	the
part	of	the	same	technology	stack.

Summary
There's	been	a	lot	of	information	in	this	chapter,	but	we	finally	know	all
the	possible	ways	to	supply	configuration	to	Terraform	templates.	Let's
recap	what	you	learned.

You	learned	how	to	use	variables	in	Terraform:	what	kind	of	variables	we
can	use	and	how	we	can	provide	them	interactively,	inline,	with
environment	variables	and	variable	files.	We	also	discovered	data	sources:
a	relatively	new	concept	in	Terraform	that	allows	us	to	get	read-only	data.
While	perhaps	being	still	a	bit	too	new,	we	found	few	applications	for	this
concept.	Then,	you	learned	how	to	generate	configuration	files	with	the
template_file	data	source	and	on	top	of	that,	explored	multiple	other
providers,	all	simplifying	our	configuration	efforts.	In	the	end,	we	even
took	a	brief	look	into	what	Consul	is	and	how	it	works	with	Terraform.

But	Consul	is	not	the	only	tool	that	you	will	want	to	use	with	Terraform.
As	Terraform	is	just	a	one	utility	in	your	infrastructure	toolchain,	you
might	be	wondering	how	to	connect	it	with	other	software.	For	example,
how	to	connect	it	with	configuration	management	tools?	How	to	perform
complex	provisioning	of	servers?	How	to	execute	scripts	after	or	during
Terraform	runs?	In	the	next	chapter,	you	will	learn	everything	about
connecting	Terraform	with	other	software.

Connecting	with	Other	Tools
Even	though	Terraform	is	a	great	tool	to	describe	your	Infrastructure	as
Code	(IaC),	it	still	covers	only	the	highest	level	components	of	your
system.	It	is	perfect	when	you	need	to	create	cloud	resources.	It's
especially	hard	to	replace	Terraform	when	your	company	relies	on	many
AWS	(or	other	large	cloud	provider)	services.	However,	it	is	not	the	only
tool	you	need	for	your	infrastructure.	HashiCorp	makes	it	clear	in	the	Tao
of	HashiCorp:

The	simple,	modular,	composable	approach	allows	us	to	build	products	at
a	higher	level	of	abstraction.	Rather	than	solving	the	holistic	problem,	we
break	it	down	into	constituent	parts,	and	solve	those.	We	build	the	best
possible	solution	for	the	scope	of	each	problem,	and	then	combine	the
blocks	to	form	a	solid,	full	solution.	-	https://www.hashicorp.com/blog/tao-of-
hashicorp.html

In	this	chapter,	you	will	learn	how	to	connect	Terraform	with	other	tools,
most	importantly	with	configuration	management	systems:	how	to	make	it
play	well	with	Ansible,	Chef,	and	Puppet,	how	to	bootstrap	your	machines
properly,	and	how	to	invoke	basically	any	other	tool	that	you	need	to
support	your	infrastructure.	You	will	learn	some	new	tools,	such	as	testing
frameworks	and	wrappers	around	Terraform	state	files.	We	will	also	take	a
sneak	peek	into	a	plugin	system	of	Terraform.

https://www.hashicorp.com/blog/tao-of-hashicorp.html

Returning	data	with	outputs
We've	already	talked	very	briefly	about	outputs	in	previous	chapters.	By
this	time,	you	should	already	know	what	they	are.	However,	let's	recap
their	usage	anyway.

Outputs	allow	the	returning	of	data	from	the	Terraform	template	after	it
was	applied	using	the	terraform	output	command.	For	example,	to	return
the	IP	address	of	an	EC2	instance,	we	could	define	an	output	as	follows:

output	"public_ip"	{	

			value	=	"${aws_instance.web-server.public_ip}"	

}	

That	allows	us	to	easily	pass	this	data	to	other	scripts	and	tools.	For
example,	with	this	approach,	we	could	run	tests	against	our	servers.	Enter
Inspec.

Testing	servers	with	Inspec
Just	as	your	application,	code	should	be	covered	by	unit	and	integration
tests.	Infrastructure	as	code	should	have	good	test	coverage	as	well.	There
are	multiple	ways	to	do	infrastructure	code	tests.	They	are	as	follows:

Test	only	the	code,	without	creating	a	real	infrastructure	(with
tools	such	as	ChefSpec	and	rspec-puppet)

Test	a	single	server

Test	the	complete	system

We	won't	look	at	the	first	option	to	test	our	infrastructure	in	this	book.	For
guidance	on	how	to	test	the	complete	system	(with	all	the	cloud	resources,
servers,	and	so	on),	look	at	Chapter	7,	Collaborative	Infrastructure.	As	for
this	chapter,	let's	check	one	way	to	test	a	single	server	with	Terraform	and
Inspec.

Inspec	is	a	testing	framework	written	in	Ruby.	It	provides	an	easy-to-
understand	DSL	that	allows	you	to	write	human-readable	descriptions	of
what	the	server	should	run,	which	packages	it	should	have,	and	so	on.	The
only	thing	Inspec	needs	is	the	address	of	the	server.	But,	first	things	first:
let's	install	Inspec.

Inspec	is	a	Ruby	gem,	so	you	need	to	have	Ruby	installed	on	your	system.
Depending	on	your	operating	system,	it	could	be	either	already	installed	or
available	via	a	package	manager	(yum,	dnf,	apt-get,	homebrew,	and	so	on).
Once	Ruby	is	installed,	installing	Inspec	is	just	one	command	away:

$>	gem	install	inspec

Let's	write	a	test	that	will	check	that	the	wget	package	is	installed.	Create	a
new	folder	specs/,	and	place	a	file	named	base_spec.rb	inside	of	it	with	the
following	contents:

describe	package('wget')	do	

		it	{	should	be_installed	}	

end	

For	the	complete	documentation	on	Inspec,	consult	the
official	website	http://inspec.io/.

The	only	thing	that	prevents	us	from	running	this	test	is	the	missing	IP
address	of	the	instance.	And	that's	where	Terraform	will	help	us.	First,
update	./modules/application/application.tf	to	have	the	output	defined	at
the	very	button:

output	"public_ip"	{	

		value	=	"${aws_instance.app-server.public_ip}"	

}	

Accordingly,	add	an	output	to	the	root	template.tf	file:

output	"mighty_trousers_public_ip"	{	

		value	=	"${module.mighty_trousers.public_ip}"	

}	

In	order	for	the	instance	to	actually	receive	the	public	IP	automatically,	the
subnet	needs	to	have	a	special	option	enabled.	Modify	the
aws_subnet.public	resource	to	enable	map_public_ip_on_launch:

resource	"aws_subnet"	"public"	{	

		vpc_id	=	"${aws_vpc.my_vpcmy_vpc.id}"	

		cidr_block	=	"${lookup(var.subnet_cidrs,	"public")}"	

http://inspec.io/

		map_public_ip_on_launch	=	true	

}	

You	can	remove	all	VPC	peering	code	from	your	template;
we	won't	need	it	anymore.

And	now	apply	the	template,	as	you've	done	so	many	times	by	now:

$>	terraform	apply

Give	EC2	some	time	to	completely	set	up	the	instance	with	cloud-init
(remember,	we	are	passing	the	custom	cloud-init	script	generated	with	the
template_file	data	resource).	Then,	run	the	test	we	wrote	earlier:

$>	inspec	exec	specs/base_spec.rb	-t	ssh://centos@$

(terraform	output	mighty_trousers_public_ip)-i	~/.ssh/id_rsa

Here,	~/.ssh/id_rsa	is	used	to	connect	to	the	server.	Change	it	to	point	to
the	private	key	of	a	key	pair	you	generated	for	Terraform.

The	test	will	fail	because	we	forgot	to	configure	routing	and	add	an
internet	gateway	for	our	VPC.	Currently,	none	of	the	instances	can	talk	to
the	internet	or	be	connected	from	the	internet.	The	internet	gateway	is
responsible	for	enabling	internet	connectivity	inside	VPC.	Let's	add	it	to
template.tf:

resource	"aws_internet_gateway"	"gw"	{	

		vpc_id	=	"${aws_vpc.my_vpc.id}"	

}	

Then,	modify	a	default	route	table	to	have	routing	to	the	outside	world:

resource	"aws_default_route_table"	"default_routing"	{	

		default_route_table_id	=	"${aws_vpc.my_vpc.default_route_table_id}"	

		route	{	

				cidr_block	=	"0.0.0.0/0"	

				gateway_id	=	"${aws_internet_gateway.gw.id}"	

		}	

}	

There	is	always	a	default	route	table	in	AWS.	Terraform
provides	the	aws_default_route_table	resource	to	give	an	easy
way	to	update	it.	Otherwise,	you	would	have	to	create	it	from
scratch.

Apply	the	template	and	try	to	run	Inspec	again!	You	will	get	a	bunch	of
error	messages	again,	this	time	looking	similar	to	the	following:

INFO	--	:	[SSH]	connection	failed,	retrying	in	1	seconds	

(#<Net::SSH::AuthenticationFailed:	Authentication	failed	for	user	centos@52.57.35.13

Remember	that	we	created	a	key	pair	in	the	previous	chapter?	Well,	we
never	actually	used	it.	Let's	pass	the	name	of	a	key	pair	from	a	root
template	to	the	module	and	use	it	for	our	aws_instance	resource:

module	"mighty_trousers"	{	

		source	=	"./modules/application"	

		vpc_id	=	"${aws_vpc.my_vpc.id}"	

		subnet_id	=	"${aws_subnet.public.id}"	

		name	=	"MightyTrousers"	

		keypair	=	"${aws_key_pair.terraform.key_name}"	

		environment	=	"${var.environment}"	

		extra_sgs	=	["${aws_security_group.default.id}"]	

		extra_packages	=	"${lookup(var.extra_packages,	"MightyTrousers")}"	

		external_nameserver	=	"${var.external_nameserver}"	

}	

Add	a	new	variable	to	the	application	module:

variable	"keypair"	{}	

And	use	it	inside	the	module:

resource	"aws_instance"	"app-server"	{	

		ami	=	"${data.aws_ami.app-ami.id}"	

		instance_type	=	"${lookup(var.instance_type,	var.environment)}"	

		subnet_id	=	"${var.subnet_id}"	

		vpc_security_group_ids	=	["${concat(var.extra_sgs,	aws_security_group.allow_http.*.id)}"]	

		user_data	=	"${data.template_file.user_data.rendered}"	

		key_name	=	"${var.keypair}"	

		tags	{	

				Name	=	"${var.name}"	

		}	

}	

Changing	a	key	pair	requires	instance	recreation,	but	that's	fine	because
we	didn't	have	a	production	instance	running	-	we	don't	have	to	bother
with	a	safe	replacement	procedure	yet.	Just	run	terraform	apply	again	and
give	it	a	minute	to	run.

What	we	are	doing	now	can	be	considered	a	Test	Drive
Development:	we	started	with	a	failing	test,	and	now	we	are
slowly	moving	to	make	it	green.

After	it's	done,	rerun	the	tests	and	see	them	go	green:

$>	inspec	exec	specs/base_spec.rb	-t	ssh://centos@$

	(terraform	output	mighty_trousers_public_ip)	-i	~/.ssh/id_rsa	

Target:	ssh://centos@52.57.242.158:22	

System	Package

	wget	should	be	installed	

Test	Summary:	1	successful,	0	failures,	0	skipped

This	works	well	for	testing	a	single	server,	but	most	likely,	your
infrastructure	has	more	than	one	server.	You	have	full	flexibility	on	how
to	test	them.	The	simplest	option	is	to	wrap	both	Terraform	and	Inspec

into	another	shell	script.	We	will	take	a	look	at	some	more	sophisticated
setups	in	a	bit.	What's	important	to	memorize	for	now	is	that	it	is	really
easy	to	connect	Terraform	to	external	tools	just	using	outputs.	However,
of	course,	it's	only	one	of	multiple	ways	of	doing	it.	Another	way	is	to	use
provisioners.

Don't	take	it	as	a	valid	example	of	how	to	test	a	single	server
with	Inspec.	If	you	want	to	perform	tests	like	this,	Terraform
is	the	wrong	tool	to	spin	up	the	server.	Consider	using	Test
Kitchen	(discussed	in	Chapter	7,	Collaborative
Infrastructure).

Provisioners
Provisioners	in	Terraform	are	configuration	blocks	available	for	several
resources	that	allow	you	to	perform	some	actions	after	the	resource	has
been	created.	It	is	mostly	useful	for	servers,	such	as	EC2	instances.
Provisioners	can	be	used	to	bootstrap	the	instance,	to	connect	it	to	a	cluster
or	to	run	tests,	as	we	did	manually	in	the	previous	section.	There	are	the
following	four	types	of	provisioners:

local-exec

remote-exec

file

chef

Each	of	them	has	its	own	applications	and	is	useful	for	solving	one	issue
or	another.	Let's	take	local-exec	first	and	see	how	it	can	help	in	building
inventory	files	for	Ansible.

Provisioning	with	local-exec
and	Ansible
Ansible	is	one	of	the	newest	and	hottest	open	source	configuration
management	tools.	It	has	become	increasingly	popular	due	to	its	ease	of
use.	One	of	the	main	differences	with	Chef	and	Puppet	is	the	lack	of	any
agent	installed	on	the	machine	to	configure.	The	only	requirement	is	that
the	machine	has	Python	preinstalled,	which	is	most	often	the	case	anyway.

Ansible	is	executed	via	SSH.	You	can	run	ad-hoc	commands	to	execute
trivial	scripts	on	servers,	as	well	as	apply	Ansible	playbooks	-	definitions
of	server	configuration	written	in	YAML	format,	analogous	to	Chef
cookbooks	and	Puppet	modules.	Ansible	needs	an	inventory	file	to	be	able
to	run	a	playbook	or	ad-hoc	commands.	An	inventory	is	just	a	text	file
with	a	hostname	on	each	line	and	optional	grouping	of	hosts	by	putting	a
group	name	in	square	brackets	just	preceding	the	hostnames	in	this	group.
Let's	use	Terraform	to	add	an	entry	to	the	inventory	file	after	the	new	EC2
instance	is	provisioned.

First,	make	sure	you	have	Python	and	pip	installed.	Depending	on	the
operating	system,	it	could	be	either	already	installed	or	available	for
installation	via	a	system	package	manager.

Once	pip	is	available,	installing	Ansible	is	a	single	command	away:

$>	pip	install	ansible

Now	let's	add	a	provisioner	to	./modules/application/application.tf:

resource	"aws_instance"	"app-server"	{	

		ami	=	"${data.aws_ami.app-ami.id}"	

		instance_type	=	"${lookup(var.instance_type,	var.environment)}"	

		subnet_id	=	"${var.subnet_id}"	

		vpc_security_group_ids	=	["${concat(var.extra_sgs,	aws_security_group.allow_http.*.id)}"]	

		user_data	=	"${data.template_file.user_data.rendered}"	

		key_name	=	"${var.keypair}"	

		provisioner	"local-exec"	{	

				command	=	"echo	${self.public_ip}	>>	inventory"	

		}	

		tags	{	

				Name	=	"${var.name}"	

		}	

}	

Inside	provisioners	(and	only	inside	provisioners)	we	can	use	a	special
keyword	self	to	access	attributes	of	a	resource	being	provisioned.	The
command	of	provisioner	is	executed	relative	to	the	folder	you	are	running
Terraform	from.

Apply	the	template.	Notice	that	provisioners	will	run	only	once,	after
resource	creation.	None	of	the	updates	will	re-trigger	provisioning,	so	if
you	had	your	stack	created	before,	then	destroy	it	and	start	creation	again.
Or	use	your	knowledge	about	the	terraform	taint	command	to	recreate
only	the	EC2	instance.

After	you	have	the	public	IP	address	in	an	inventory	file,	you	can	try
running	Ansible:

$>	ansible	all	-i	inventory	-a	"cat	/etc/redhat-release"	-u	centos

35.156.10.103	|	SUCCESS	|	rc=0	>>

CentOS	Linux	release	7.2.1511	(Core)	

It	might	take	a	few	minutes	for	AWS	to	upload	the	public	key	to	the
instance.	Don't	be	surprised	if	it	doesn't	work	on	the	first	attempt.

Clearly,	this	implementation	doesn't	scale	very	well.	Sooner	or	later	we
will	have	multiple	machines	having	different	roles:	application	servers,
database	servers,	and	so	on.	One	option	would	be	to	create	an	inventory
file	beforehand	with	host	groups	predefined	inside,	as	follows:

[app-server]

[db-server]

Then,	we	could	extend	the	local-exec	provisioner	to	be	a	little	bit	smarter:

		provisioner	"local-exec"	{	

				command	=	"sed	-i	'/\\[app-server\\]/a	${self.public_ip}'	inventory"	

		}	

With	some	sed	magic,	we	will	add	the	application	server	to	the	[app-
server]	host	group.	This	will	allow	us	to	write	more	granular	Ansible	code.
Note	double	slashes:	we	need	to	escape	brackets	both	for	sed	and	for
Terraform.

The	process	of	creating	and	provisioning	the	complete	infrastructure	could
look	as	follows:

Run	the	Terraform	template	to	create	servers	and	populate	the
inventory	file

Run	the	Ansible	playbook	to	configure	all	instances	in	all	groups

This	approach	has	some	flaws	though.	For	example,	it	doesn't	handle
deleted	servers:	if	the	instance	is	gone	from	the	Terraform	template,	it	will
still	exist	in	the	inventory	file	generated	previously,	leading	to	failed
Ansible	runs.	Neither	do	we	have	any	indicator	of	SSH	being	ready:	if	we
stay	with	this	approach,	we	have	to	basically	guess	if	an	instance	is	ready
to	be	SSHed	to.	Not	good!

It	would	be	nice	if	Terraform	had	built-in	Ansible	support,	but	it's	not	the
case	yet.	However,	there	is	a	small	utility	named	terraform-inventory	that
generates	a	dynamic	Ansible	inventory	from	the	Terraform	state	file.	It	is
available	for	download	on	GitHub	at	https://github.com/adammck/terraform-i
nventory.	You	need	to	use	it	after	running	Terraform,	as	follows:

https://github.com/adammck/terraform-inventory

$>	ansible	all	-i	~/bin/terraform-inventory	-a	"cat	/etc/redhat-release"	-u	centos

Besides	static	text	file	inventories,	Ansible	has	dynamic
inventories,	meaning	that	you	can	pass	a	script	that
generates	an	inventory	on	the	fly.	That's	why	the	command
mentioned	previously	works.

It's	important	to	understand	that	Terraform	is	a	tool	that	focuses	on	doing
exactly	one	job,	and	quite	often,	you	will	need	to	add	some	extra	tools	that
either	support	Terraform	or	extend	its	area	of	usage.	Luckily,	there	are
external	programs	that	can	make	life	with	Terraform	a	little	bit	easier,	like
the	Terraform	inventory	we	just	saw.	We	will	cover	a	few	other	tools	a	bit
later.

The	local-exec	provisioner	is	a	powerful	way	to	trigger	some	scripts	from
the	machine	that	is	running	Terraform	commands.	Earlier,	we	used	outputs
to	pass	an	IP	address	to	Inspec.	With	local-exec,	we	can	remove	the
manual	step	of	running	the	inspec	command:	just	put	this	command	inside
the	provisioner	and	pass	the	IP	by	interpolating	the	aws_instance	attribute.
This	sounds	like	a	great	exercise	for	you!	After	you	are	done	with	it,
proceed	further.

Although	there	is	no	built-in	Ansible	support,	there	is	Chef	support	that
works	out-of-the-box.	Let's	take	a	quick	look	at	it.

Provisioning	with	Chef
Chef	is	a	much	older,	mature	solution	to	configure	management.	Unlike
Ansible,	it	does	require	an	installation	of	an	agent	on	each	server,	named
chef-client.	Also,	unlike	Ansible,	it	has	a	Chef	server	that	each	client
pulls	configuration	from.	We	will	not	install	the	complete	Chef	server,
because	doing	so	could	take	up	the	rest	of	the	chapter.	If	you	know	and
use	Chef,	then	keep	reading.	If	you	don't,	skip	to	the	next	section.

There	are	two	places	where	Chef	APIs	are	used	in	Terraform:

A	Chef	provisioner

A	Chef	provider

A	Chef	provisioner	allows	you	to	specify	all	the	details	to	connect	to	a
Chef	server,	an	initial	set	of	attributes,	and	the	run	list.	Once	an	instance	is
created,	Terraform	will	SSH	into	it,	install	chef-client,	and	try	to	register
it	with	Chef	server	using	the	configuration	you	provided	in	your	template:

	provisioner	"chef"		{	

					run_list	=	["cookbook::recipe"]	

					node_name	=	"app-server-1"	

					server_url	=	"https://chef.internal/organizations/my_company"	

					recreate_client	=	true	

					user_name	=	"packt"	

					user_key	=	"${file("packt.pem")}"	

		}	

The	recreate_client	option	is	important:	without	it,	you	can't	reregister	the
server	if	it	had	to	be	recreated.	There	are	many	more	parameters	you	can
configure	for	a	Chef	provisioner.	For	full	reference,	you	should	consult	the

Terraform	documentation.

The	other	part,	Chef	provider,	allows	you	to	create	various	entities	on	a
Chef	server.	You	could	create	a	node	with	a	Chef	provider	as	well,	but	it's
not	recommended	because	it	doesn't	actually	install	chef-client	anywhere.
You	could	use	the	provider	to	store	and	update	all	your	Chef	roles	as
code:

resource	"chef_role"	"app-server"	{	

		name	=	"app-server"	

		run_list	=	["recipe[nginx]"]	

}	

There	are	two	things	to	consider	before	using	Terraform	with	Chef
though:

First,	Chef	itself	already	has	the	capabilities	to	store	all	of	its
resources	as	code,	in	a	dedicated	Chef	repository.	Normally,	all
roles,	data	bags,	and	so	on	are	already	stored	in	a	version	control
system	in	a	plan	JSON	format,	and	using	Terraform	for	this
purpose	has	little	to	no	benefit.

Second,	if	you	use	Chef	heavily,	then	you	might	not	need
Terraform	at	all.	Chef	already	has	the	Chef	provisioning
component	that	solves	exactly	the	same	problem	as	Terraform:
allows	you	to	define	your	infrastructure	in	a	single	template.	It	has
a	few	extra	benefits,	like	being	platform	agnostic	for	base
resources:	servers,	networks,	and	others.	It	has	downsides	as	well:
it	is	not	as	actively	developed	as	Terraform	(and	looks	more	and
more	like	a	deprecated	project)	and	the	list	of	supported	providers
is	not	that	long.	But	if	you	use	AWS	and	Chef,	then	bringing
Terraform	into	the	picture	might	not	be	the	best	decision	to	make.

In	order	for	Terraform	to	use	the	Chef	provisioner,	it	has	to	have	SSH
access	to	the	server.	This	SSH	access	doesn't	have	to	be	used	only	to	set
up	Chef	though.	That	brings	us	to	the	remote-exec	provisioner.

Provisioning	with	remote-exec
and	Puppet
Each	provisioner	that	needs	to	connect	to	the	instance	has	a	connection
block	defined.	This	block	is	responsible	for	either	SSH	or	WinRM
configuration	so	that	Terraform	knows	how,	with	which	user,	password
(or	key)	to	connect	to	the	server.	You	can	execute	any	scripts	on	the	target
server	via	this	connection	with	the	help	of	the	remote-exec	provisioner.

There	is	a	built-in	Chef	provisioner,	and	it's	rather	easy	to	use	Ansible
(because	it	doesn't	need	anything	installed	on	the	target	system),	but	what
about	Puppet?	It	works	very	similarly	to	Chef,	with	the	same	server-client
model,	and	it	requires	Puppet	agents	to	be	installed.	Let's	do	it	with	remote-
exec.

We	could	put	its	installation	into	the	cloud-init	script,	but
then	we	wouldn't	be	able	to	use	it	for	the	remote-exec
demonstration.

First,	prepare	modules/application/application.tf	for	remote-exec:	remove
any	local-exec	and	Chef	provisioners	you've	added	before.

Then,	let's	configure	a	connection	block.	The	default	username	to	SSH
into	CentOS	7	AMI	is	"centos",	and	we	need	to	specify	it	in	the	template:

		provisioner	"remote-exec"	{	

				connection	{	

						user	=	"centos"	

				}	

		}	

This	should	be	enough	to	get	going,	but	if	you	are	using	a	false	private

key,	then	you	need	to	specify	it	in	the	same	block:

		provisioner	"remote-exec"	{	

				connection	{	

						user	=	"centos"	

						private_key	=	"${file("/home/johndoe/.ssh/my_private_key.pem")}"	

				}	

		}	

You	could	also	use	an	SSH-agent	with	the	Boolean	agent
parameter.	In	a	team,	you	don't	want	to	hardcode	the	path	to
your	private	key;	this	path	is	different	for	each	of	your
colleagues.	Using	SSH-agent	solves	this	problem.

Sometimes,	your	servers	are	not	publicly	available	via	SSH.	Your
database	server,	for	example,	is	probably	inside	a	private	subnet,	and	in
order	to	access	it,	you	need	to	use	a	so-called	bastion	host.	Terraform	has
got	you	covered	here	as	well,	with	bastion	configuration	options:

				connection	{	

						user	=	"centos"	

						agent	=	true	

						bastion_host	=	"my_bastion.com"	

						bastion_user	=	"centos"	

						bastion_private_key	=	"${file("/home/johndoe/.ssh/bastion_key.pem")}"	

				}	

There	is	the	same	wide	set	of	configuration	options	for	WinRM
connections,	although	bastion	host	can	be	configured	only	for	SSH
connections.

There	are	three	ways	to	provide	a	script:	inline	in	the	template,	by
specifying	a	path	to	the	script,	or	by	specifying	the	whole	array	of	paths	to
different	scripts	that	will	be	executed	in	the	order	you	provide	them.	Let's
keep	it	simple	and	provide	the	script	inline	first:

		provisioner	"remote-exec"	{	

				connection	{	

						user	=	"centos"	

				}	

				inline	=	[

						"sudo	rpm	-ivh	http://yum.puppetlabs.com/puppetlabs-release-el-7.noarch.rpm",	

						"sudo	yum	install	puppet	-y"	

]	

		}	

This	will	install	the	Puppet	yum	repository	and	Puppet	itself.	It's	a	bit	silly
to	install	Puppet	and	not	to	use	it	though.	We	need	to	configure	something
with	it.

Although	scalable	secure	Puppet	environments	often	assume	Puppet
master	is	in	place,	it's	easy	to	use	Puppet	in	masterless	mode	as	well.	To
do	so,	we	can	use	the	puppet	apply	command	that	requires	a	manifest	file
(configuration	description	written	in	Puppet	language).	But	there	is	no
manifest	file	on	the	server!	We	need	to	put	it	there	somehow.	File
provisioner	will	help	us	with	that.

Uploading	files	with	a	file
provisioner
A	file	provisioner	simply	uploads	a	file	to	the	server.	It's	a	perfect	way	to
upload	configuration	files,	certificates,	and	so	on.	Create	a	new	file	named
setup.pp	in	the	./modules/application/	folder	with	the	following	content:

host	{	'repository':	

		ip	=>	'10.24.45.127',	

}	

Puppet's	host	resource	will	add	a	host	entry	on	the	machine.	Normally,	we
should	not	hardcode	host	entries	on	the	machine.	However,	sometimes,	it
doesn't	have	access	to	the	DNS	server	yet,	but	it	already	needs	to	install
some	packages	from	an	internal	repository.	That's	the	use	case	our
manifest	will	cover.	We	just	need	to	upload	it.

Because	we	will	end	up	with	two	different	provisioners:	file	and	remote-
exec,	we	should	move	connection	block	outside	the	remote-exec	provisioner
and	define	it	on	a	resource	level.	The	file	provisioner	is	simple:	we	only
need	to	specify	the	source	file	and	destination:

	resource	"aws_instance"	"app-server"	{	

		ami	=	"${data.aws_ami.app-ami.id}"	

		instance_type	=	"${lookup(var.instance_type,	var.environment)}"	

		subnet_id	=	"${var.subnet_id}"	

		vpc_security_group_ids	=	["${concat(var.extra_sgs,	aws_security_group.allow_http.*.id)}"]	

		user_data	=	"${data.template_file.user_data.rendered}"	

		key_name	=	"${var.keypair}"	

		connection	{	

				user	=	"centos"	

		}	

		provisioner	"file"	{	

				source	=	"${path.module}/setup.pp"	

				destination	=	"/tmp/setup.pp"	

		}	

		provisioner	"remote-exec"	{	

				inline	=	[

						"sudo	rpm	-ivh	http://yum.puppetlabs.com/puppetlabs-release-el-7.noarch.rpm",	

						"sudo	yum	install	puppet	-y",	

						"sudo	puppet	apply	/tmp/setup.pp"	

]	

		}	

		tags	{	

				Name	=	"${var.name}"	

		}	

}	

Destroy	the	template	or	taint	the	aws_instance	resource	and	apply	it	again	to
rerun	provisioners.	Terraform	will	output	everything	from	scripts	to	the
console,	so	you	should	see	something	like	the	following:

module.mighty_trousers.aws_instance.app-server	(remote-exec):	Complete!

module.mighty_trousers.aws_instance.app-server	(remote-exec):	

Notice:	Compiled	catalog	for	ip-10-0-1-127.eu-central-1.compute.internal	

in	environment	production	in	0.07	seconds

module.mighty_trousers.aws_instance.app-server	(remote-exec):	Notice:	/Stage[main]/Main/Host[repository]/ensure:	created

module.mighty_trousers.aws_instance.app-server	(remote-exec):	

Notice:	Finished	catalog	run	in	0.02	seconds

Even	without	the	built-in	support	for	Puppet,	it	appears	to	be	relatively
simple	to	use	it	with	Terraform.	Perhaps	a	bit	more	complicated	in	a
server-client	setup	(you	need	to	handle	node	registration	properly),	but
still	nothing	too	complicated.	That's	the	flexibility	remote-exec	brings.

One	question	that	could	be	raised	is:	why	would	I	use	provisioners	instead
of	cloud-init?	This	is	a	valid	question,	and	there	is	exactly	one	big	reason
to	use	provisioners:	dependency	management	inside	Terraform.	If	you	use
cloud-init,	then	there	is	no	way	to	order	the	creation	of	different	resources
inside	the	Terraform	template,	simply	because	Terraform	has	no	idea
when	cloud-init	has	finished	its	job.	And	that's	a	problem	if	you	have	some
kind	of	master	that	should	exist	before	every	slave	node	is	provisioned,

because	a	slave	needs	a	master	to	exist.	With	provisioners,	it's	not	a
problem:	the	resource	is	not	considered	as	created	till	provisioning	is
finished.	This	means	that	if	resource	A	depends	on	resource	B,	Terraform
won't	start	creating	it	till	all	provisioners	of	resource	B	are	finished.

So	far,	all	provisioners	you	have	learned	are	meant	to	be	used	with	one
resource,	and	all	of	them	are	impossible	to	rerun	without	recreating	the
resource	it	provisions.	In	this	situation,	null_resource	is	our	friend.

While	this	book	is	about	Terraform,	you	should	always	know
your	options.	Similar	to	Chef,	Puppet	has	built-in	ways	to	do
the	same	job	as	Terraform:	to	describe	the	infrastructure	in
a	single	template.	In	the	case	of	Puppet,	it	has	its	own
powerful	language	that	allows	Puppet	modules	such	as
puppetlabs-aws	(https://github.com/puppetlabs/puppetlabs-aws)	to
describe	all	of	your	cloud	resources	in	an	idempotent	way.
Again,	if	you	are	a	heavy	Puppet	user,	consider	the	features
it	has	before	bringing	extra	tools	such	as	Terraform	into
your	company.

https://github.com/puppetlabs/puppetlabs-aws

Reprovisioning	machines	with
null_resource
null_resource	doesn't	create	anything.	It's	a	container	for	provisioners.
Because	it	is	not	directly	connected	to	any	piece	of	the	infrastructure,	it's
not	a	big	deal	to	destroy	it	in	order	to	retrigger	provisioners	it	has	defined
on.

There	are	two	types	of	provisioning	we	are	doing	right	now	with	Puppet:
the	one-time	Puppet	installation	and	Puppet	run,	which	should	be
retriggered	if	the	manifest	changes--imagine	that	the	repository	IP
changed	and	somehow	we	still	don't	have	a	proper	DNS	server	in	place.

If	you	have	Puppet	master,	all	of	it	makes	zero	sense:
modules	and	manifests	are	stored	on	the	master,	and	the
Puppet	agent	runs	as	a	system	service	and	applies	manifests
automatically	every	N	minutes.	On	the	contrary,	this
approach	can	be	very	handy	if	you	decide	to	go	for	a
masterless	setup,	because	in	that	case,	you	have	a	whole	new
set	of	problems	of	how	to	distribute	your	Puppet	code	to	all
the	servers	you	have.

Slim	down	the	provisioners	of	the	aws_instance	resource	to	look	like
following:

		connection	{	

				user	=	"centos"	

		}	

		provisioner	"remote-exec"	{	

				inline	=	[

						"sudo	rpm	-ivh	http://yum.puppetlabs.com/puppetlabs-release-el-7.noarch.rpm",	

						"sudo	yum	install	puppet	-y",	

]	

		}	

Now,	let's	define	null_resource	right	after	aws_instance.	Note	the	triggers
block:	it	allows	you	to	specify	when	exactly	to	recreate	null_resource.	In
this	case,	it	will	be	recreated	if	the	instance	was	recreated,	thus	rerunning
the	provisioning	automatically:

resource	"null_resource"	"app_server_provisioner"	{	

		triggers	{	

				server_id	=	"${aws_instance.app-server.id}"	

		}	

		connection	{	

				user	=	"centos"	

				host	=	"${aws_instance.app-server.public_ip}"	

		}	

		provisioner	"file"	{	

				source	=	"${path.module}/setup.pp"	

				destination	=	"/tmp/setup.pp"	

		}	

		provisioner	"remote-exec"	{	

				inline	=	[

						"sudo	puppet	apply	/tmp/setup.pp"	

]	

		}	

}	

This	null_resource	would	run	only	after	the	EC2	instance	was	provisioned
because	it	depends	on	it.	It	will	rerun	(meaning	provisioners	will	rerun)	if
the	instance	is	changed.	And	you	can	force	the	run	of	provisioners	with
our	old	friend	taint	command:

$>	terraform	taint	-module	mighty_trousers	null_resource.app_server_provisioner

Such	reprovisioning	is	only	one	of	many	ways	you	can	use	null_resource.
It's	a	simple	tool,	but	it	gives	you	the	ability	to	create	really	complex
provisioning	scenarios,	with	multiple	connections	to	different	servers,
local	and	remote	scripts,	and	data	pulled	from	different	sources.	With	a
tool	such	as	bootstrapping	clusters,	building	complex	Ansible	inventories
and	triggering	test	pipelines	becomes	a	piece	of	cake.

You	have	now	learned	everything	there	that	is	there	to	learn	about
Terraform	provisioners.	As	we've	seen,	it's	rather	easy	to	invoke	any	other
tool	via	the	usage	or	combination	of	remote-exec,	local-exec,	and
null_resource.	But	it's	not	always	that	convenient	to	use	them,	especially	if
there	is	a	better	alternative	in	the	form	of	third-party	plugins.

Using	third-party	plugins
Regardless	of	how	convenient	it	is	to	connect	Terraform	with	other
external	tools,	such	as	configuration	management	systems,	one	would
always	prefer	a	built-in,	native	solution.	An	example	is,	as	discussed
previously,	the	Chef	provisioner:	while	it's	possible	to	do	exactly	the	same
with	remote-exec,	it's	much	faster	to	use	a	special	provisioner	written	just
for	this	purpose.	Unfortunately,	while	the	list	of	supported	providers	is
long,	some	of	the	technologies	or	services	you	need	will	be	missing.

Luckily,	Terraform	has	a	plugin-based	architecture,	and	it's	trivial	to
extend	it	with	custom	providers	and	provisioners.	Plugins	are	written	in
the	Go	programming	language,	and	if	you	want	to	write	your	own,	you
need	to	have	at	least	basic	knowledge	of	it.

There	are	plugins	available	on	GitHub	that	you	could	use.	Ideally,
developers	should	contribute	these	providers	and	provisioners	to	the
Terraform	core.	Sometimes,	though,	it's	not	possible:	it	takes	time	to
create	and	test	a	fully	functional	provider	or	provisioner	and,	sometimes,
these	third-party	plugins,	while	being	ready	to	use,	are	not	yet	accepted	by
Terraform	core	team.

This	should	not	stop	you	from	using	them	though.	You	just	have	to	be
careful,	and	keep	in	mind	that	they	are	more	likely	to	have	bugs	than
providers	that	are	already	part	of	the	Terraform.

If	you	have	been	following	the	latest	trends	in	the	operations	world,	then
you	might	have	heard	about	Kubernetes.	In	essence,	it's	an	orchestration
tool	for	containers	which	gives	you	automated	deployment,	scaling,	and
management	of	containers,	regardless	of	which	containers	tool	you	use,	be
it	Docker,	rkt,	or	something	else.	Kubernetes	has	many	components	and
entities	to	manage,	such	as	pods	(groups	of	containers)	and	services.	It's	a
perfect	candidate	to	be	managed	by	Terraform.	And	because	it's	such	a

complex,	big	provider	it	takes	a	while	to	get	it	right.	As	a	result,	at	the
moment,	it	is	still	not	part	of	Terraform,	but	you	can	still	use	it	as	a	plugin.

The	Terraform-provider-kubernetes	source	code	is	stored
at	GitHub:	https://github.com/maxmanuylov/terraform-provider-k
ubernetes.	To	get	the	latest	version	running,	you	would	have
to	compile	it	yourself,	installing	Go	beforehand.	There	are
already-compiled	and	ready-to-use	releases	though,	also
available	at	GitHub:	https://github.com/maxmanuylov/terraform-
provider-kubernetes/releases.

In	order	to	install	a	plugin,	you	first	need	to	download	it	and	make	it
available	as	part	of	your	PATH	environment	variable:

$>	wget	https://github.com/maxmanuylov/terraform-provider-kubernetes

/releases/download/v1.0-beta.3/terraform-provider-kubernetes-v1.0-beta.3-linux.tar.gz

$>	tar	-xzf	terraform-provider-kubernetes-v1.0-beta.3-linux.tar.gz

Then,	you	need	to	activate	it	by	adding	it	to	the	~/.terraformrc	file,	as
follows:

providers	{	

				kubernetes	=	"/path/to/terraform-provider-kubernetes"	

}	

In	this	case,	kubernetes	is	a	prefix	for	all	resources.	If	you	want	to	have
some	fun,	you	can	name	it	borg	and	then	all	resources	will	have	to	prefixed
with	borg	instead	of	kubernetes.	But	then,	it's	rather	confusing	for	your
team.

Borg	is	the	name	of	the	internal	Google	orchestration
system.	Kubernetes	design	is	based	on	Borg	and	is	an
improved	version	of	it.

That's	everything	there	is	to	do	to	make	the	plugin	available.	You	can	use
all	Kubernetes	resources	inside	your	template	now,	as	follows:

https://github.com/maxmanuylov/terraform-provider-kubernetes
https://github.com/maxmanuylov/terraform-provider-kubernetes/releases

resource	"kubernetes_resource"	"mypod"	{	

		cluster	=	"${kubernetes_cluster.main.cluster}"	

		collection	=	"pods"	

		name	=	"mypod"	

		content	=	"${file("mypod.yaml")}"	

}	

Another	useful	third-party	plugin	is	terraform-provisioner-ansible	that,	you
guessed	right,	adds	Ansible	support	to	Terraform.	The	source	code	of	this
plugin	is	available	on	GitHub:	https://github.com/jonmorehouse/terraform-pro
visioner-ansible.	It	appears	to	be	nonfunctional	with	the	latest	Terraform
releases	though.	As	with	every	other	third-party	plugin,	you	should	use	it
at	your	own	risk.

https://github.com/jonmorehouse/terraform-provisioner-ansible

Summary
In	this	chapter,	you	learned	a	lot	of	new	technologies,	which,	can	be
combined	with	Terraform	to	perfect	your	infrastructure	as	code	setup.	We
practiced	every	type	of	provisioner	Terraform	has,	specifically,	the
following:

Executed	tests	with	Inspec	and	Terraform	outputs

Generated	inventory	files	for	Ansible	with	local-exec

Created	new	Chef	nodes	with	the	Chef	provisioner

Installed	the	Puppet	agent	with	remote-exec	and	uploaded	Puppet
manifests	with	a	file	provisioner

Made	reusable	provisioning	with	null_resource

We	also	took	a	look	at	a	few	third-party	plugins,	which	are,	unfortunately,
of	low	quality,	often	unsupported,	and	have	bugs.	You	should	normally
use	both	built-in	providers	and	provisioners,	or	implement	something	with
existing	provisioners.

In	the	next	chapter,	we	will	go	to	the	next	level	of	managing	infrastructure
with	Terraform.	You	will	actually	learn	how	to	continuously	manage	an
existing	infrastructure.	We	will	see	what	Terraform	provides	in	terms	of
scaling	infrastructure,	and	how	to	perform	complex	update	scenarios.

Scaling	and	Updating
Infrastructure
Honestly,	you	already	know	almost	everything	about	Terraform	now.
Creating	networks	in	the	Cloud?	Easy.	Starting	a	new	virtual	server	and
provisioning	it	with	your	favorite	configuration	management	tool?	Isn't	it	a
piece	of	cake?!	You	know	how	to	write	a	beautiful	template,	refactor	it
into	modules,	and	configure	it	with	the	many	ways	that	there	are	to
configure	a	template.

Perhaps	you	even	moved	your	whole	infrastructure	to	Terraform.	But	then
you	realize	that	creating	infrastructure	with	Terraform	is	just	the
beginning;	that	is,	your	infrastructure	is	there	to	stay,	and	it	needs	to	be
updated	continuously	as	your	business	requirements	change.

There	are	many	challenges	in	managing	the	resources	you	have.	We	need
to	figure	out	how	to	perform	changes	without	interrupting	the	service.	We
will	take	a	look	at	the	following	and	some	other	topics	in	this	chapter:

The	means	of	scaling	the	service	up	and	down	with	Terraform

Performing	an	in-place	upgrade	of	a	server	and	how	to	do	rolling
updates

How	to	perform	blue-green	deployments

How	to	scale	automatically	with	the	Auto	Scaling	groups	of	AWS

What	is	immutable	infrastructure	is	and	how	the	tool	named
Packer	helps	to	achieve	that

Before	proceeding	with	this	chapter,	destroy	all	your	previously	created
resources	with	the	terraform	destroy	command.	We	are	starting	from	a
clean	state	again.

Counting	servers
So	far,	we	have	created	only	one	EC2	instance	for	the	web	application
MightyTrousers.	As	the	popularity	of	the	app	increases,	a	single	server	can't
handle	the	load	properly	anymore.	We	could	scale	vertically	by	increasing
the	instance	size,	but	it	would	still	leave	us	with	a	single	server	that
handles	all	the	critical	traffic.	In	a	cloud	world,	you	should	assume	that
absolutely	every	machine	you	have	can	be	gone	at	any	moment.	You
should	be	prepared	for	worst	case	scenarios:	a	distributed	denial-of-
service	(DDoS)	attack	putting	your	cluster	on	its	knees,	an	earthquake
destroying	the	whole	data	center,	an	internal	AWS	outage,	and	many
others.

Thus,	not	only	as	a	way	to	scale	the	infrastructure,	but	also	to	make	the
application	highly	available,	we	should	increase	the	number	of	instances
we	have.	And	it's	not	only	about	the	number	of	them,	but	also	the	location
of	each	of	them:	keeping	20	instances	in	a	single	place	still	puts	you	in	a
situation	where	the	outage	of	one	data	center	puts	you	out	of	business;
while	10	instances	each	in	two	data	centers	in	two	different	geographical
locations	will	keep	your	software	running	even	in	the	event	of	a	worst	case
scenario	for	one	of	data	centers.

Terraform,	being	a	tool	based	on	declarative	DSL,	doesn't	have	loops	as
part	of	its	language.	If	we	were	to	do	it	in	a	regular	programming
language,	let's	say	Ruby,	we	would	write	something	like	the	following:

5.times	do	

		create	ec2_instnace	

end		

Chef	combines	both	declarative	and	imperative	approaches,	which	would
be	a	reasonable	(though,	not	on	every	occasion)	thing	to	do.	However,	in

Terraform,	we	don't	and	can't	tell	the	tool	what	to	do.	We	tell	Terraform
what	should	exist	as	part	of	our	infrastructure,	and	the	specifics	of	creation
are	handled	by	the	tool	itself.	That's	why,	instead	of	iterating	over	the
same	resource,	Terraform	gives	as	an	extra	property,	responsible	for
defining	how	many	resources	of	the	same	kind	should	exist.	It's	named
count.

Using	it	is	simple:	for	every	resource	that	needs	to	be	created	more	than
once,	you	just	specify	the	count	parameter	to	be	equal	to	the	number	you
desire:

resource	"aws_instance"	"my-app"	{	

		...	

		count	=	5	

}	

	

One	problem	with	count	is	that	it	cannot	be	used	with	modules.	In	our	case,
it's	not	really	a	big	problem	though;	we	want	to	multiply	the	number	of
instances	created	in	the	module,	while	keeping	only	one	security	group	for
all	of	them.	Still,	as	we	don't	want	to	hardcode	any	values,	we	need	a	way
to	pass	the	required	number	of	instances	to	the	module.

As	we	are	already	well	familiar	with	variables,	let's	just	add	one	more	to
the	application	module	in	the	modules/application/variables.tf	file:

...	

variable	"instance_count"	{	default	=	0	}	

Let's	use	it	straight	away:

resource	"aws_instance"	"app-server"	{	

		ami	=	"${data.aws_ami.app-ami.id}"	

		instance_type	=	"${lookup(var.instance_type,	var.environment)}"	

		subnet_id	=	"${var.subnet_id}"	

		vpc_security_group_ids	=	["${concat(var.extra_sgs,	aws_security_group.allow_http.*.id)}"]	

		user_data	=	"${data.template_file.user_data.rendered}"	

		key_name	=	"${var.keypair}"	

		connection	{	

				user	=	"centos"	

		}	

		provisioner	"remote-exec"	{	

				inline	=	[

						"sudo	rpm	-ivh	http://yum.puppetlabs.com/puppetlabs-release-el-7.noarch.rpm",	

						"sudo	yum	install	puppet	-y",	

]	

		}	

		tags	{	

				Name	=	"${var.name}"	

		}	

		count	=	"${var.instance_count}"	

}	

Now,	pass	the	variable	to	the	module:

module	"mighty_trousers"	{	

		source	=	"./modules/application"	

		...	

		instance_count	=	2	

}	

We	can	try	to	apply	our	template	now,	but	trust	me,	it	won't	be	a	success:

				$>	terraform	plan

				Refreshing	Terraform	state	in-memory	prior	to	plan...

				The	refreshed	state	will	be	used	to	calculate	this	plan,	but

				will	not	be	persisted	to	local	or	remote	state	storage.

				

				module.mighty_trousers.data.template_file.user_data:	Refreshing			

				state...

				module.mighty_trousers.data.aws_ami.app-ami:	Refreshing	state...

				

				Error	running	plan:	1	error(s)	occurred:

				*	Resource	'aws_instance.app-server'	does	not	have	attribute	'id'	

			for	variable	

				'aws_instance.app-server.id'

The	problem	here	is	that	we	are	using	the	aws_instance	resource	in	the
null_provisioner,	defined	in	the	previous	chapter:

resource	"null_resource"	"app_server_provisioner"	{	

		#	

		connection	{	

				user	=	"centos"	

				host	=	"${aws_instance.app-server.public_ip}"	

		}	

We	configured	this	provisioner	when	we	had	only	one	EC2	instance,	but
now,	as	Terraform	creates	two	of	them,	it's	not	valid	anymore.	It's	not	the
only	occurrence	of	this	mistake:	the	public_ip	output	also	assumes	that
there	is	just	one	instance.

There	are	two	ways	to	fix	it:

Take	only	the	first	instance	created

Get	values	from	all	instances

It	actually	won't	fix	null_resource	for	us,	so	just	for	the	sake	of
demonstration,	comment	it	out.	We	will	fix	it	in	a	bit.

To	comment	out,	put	a	hash	sign	(#)	in	front	of	the	line.

	

Now,	if	we	want	to	access	one	particular	instance	from	the	list,	we	can
reference	it	as	follows:	aws_instance.app-server.$NUMBER.public_ip.	Try	it	out:

output	"public_ip"	{	

		value	=	"${aws_instance.app-server.0.public_ip}"	

}	

The	Terraform	plan	is	now	successfully	completed.	But,	well,	that's	kind
of	useless,	isn't	it?	We	need	all	addresses	to	be	returned	from	the	module.
That's	where	the	join()	function	becomes	handy:	it	allows	you	to	build	a
single	string	from	the	values	of	all	elements	in	a	list.	The	following
example	speaks	for	itself:

output	"public_ip"	{	

		value	=	"${join(",",	aws_instance.app-server.*.public_ip)}"	

}	

If	you	were	to	try	to	apply	the	template	like	this	is,	you	would	get	an
almost	satisfying	result:

Outputs:	

mighty_trousers_public_ip	=	35.156.29.192,35.156.32.127	

This	output	is	good	only	if	it	returns	the	IPs	of	servers	that	were	properly
provisioned,	so	let's	get	back	to	fixing	the	null_provisioner.	This	is	how	it
should	look	now,	before	it	works	with	multiple	instances:

resource	"null_resource"	"app_server_provisioner"	{	

		triggers	{	

				server_id	=	"${aws_instance.app-server.id}"	

		}	

		connection	{	

				user	=	"centos"	

				host	=	"${aws_instance.app-server.public_ip}"	

		}	

	

		provisioner	"file"	{	

				source	=	"${path.module}/setup.pp"	

				destination	=	"/tmp/setup.pp"	

		}	

	

		provisioner	"remote-exec"	{	

				inline	=	[

						"sudo	puppet	apply	/tmp/setup.pp"	

]	

		}	

}	

The	first	thing	to	fix	here	is	the	triggers	block.	It	needs	to	take	all
instances	into	consideration,	and	we	can	do	so	with	the	same	join()
function:

		triggers	{	

				server_id	=	"${join(",",	aws_instance.app-server.*.id)}"	

		}	

This	will,	of	course,	fix	the	problem	with	retriggering	the	provisioner.	But
it	still	provisions	only	one	instance,	as	you	can	see	in	the	following	line:

host	=	"${aws_instance.app-server.public_ip}"	

The	problem	becomes	more	complicated:	we	can't	go	further	with	just	a
single	provisioner	for	multiple	instances,	and	this	1-n	relationship	simply
won't	work:

Rather,	what	we	need	is	something	like	the	following:

This	means	that,	first	of	all,	we	need	to	add	the	count	parameter	to

null_resource	as	well.	It	would	be	the	same	instance_count	variable	used	for
the	aws_instance	resource.	The	trick	here	is	that,	right	inside	resource
configuration,	you	can	access	the	index	of	the	particular	instance	of	this
resource	via	the	${count.index}	variable,	which,	combined	with	the
element()	function,	allows	us	to	query	attributes	on	the	other	list	of	the
same	size--the	list	of	instances.	With	this	change,	the	complete
null_resource	block	should	look	as	follows	(notice	the	highlighted
connection	block):

resource	"null_resource"	"app_server_provisioner"	{	

		triggers	{	

				server_id	=	"${join(",",	aws_instance.app-server.*.id)}"	

		}	

		connection	{				user	=	"centos"		host	=	"${element(aws_instance.app-	

		server.*.public_ip,	

																		count.index)}"		}	

		provisioner	"file"	{	

				source	=	"${path.module}/setup.pp"	

				destination	=	"/tmp/setup.pp"	

		}	

		provisioner	"remote-exec"	{	

				inline	=	[

						"sudo	puppet	apply	/tmp/setup.pp"	

]	

		}	

		count	=	"${var.instance_count}"	

}	

This	pattern	can	be	seen	in	Terraform	templates	quite	often:	binding	two
or	more	groups	of	resources	with	lookups	like	this.	We	don't	have	the	need
to	do	so	here,	but	it	is	also	common	to	do	the	same	for	the	user_data
attribute	and	the	template_file	data	resource	combination,	if	user	data
needs	an	index	as	a	variable.

With	this	new	fancy	count-involved	configuration,	you	might	be	tempted
to	finally	apply	the	template.	Go	ahead	and	do	so.	You	will	notice	a	few
things.	For	example,	the	log	output	for	counted	resource	looks	as	follows:

module.mighty_trousers.null_resource.app_server_provisioner.0	

It	looks	the	same	in	the	state	file	as	well:

"null_resource.app_server_provisioner.0":	{	

#	...	

If	you	examine	the	body	of	one	of	the	null_resource	in	the	state	file,	you
will	also	note	this	part:

	"attributes":	{	

			"id":	"9043342603318320402",	

			"triggers.%":	"1",	

			"triggers.server_id":	"i-85e9d839,i-86e9d83a"	

	},	

And	there	is	a	bug	right	here	for	you	to	fix:	every	provisioner	for	every
instance	will	be	retriggered,	even	if	only	one	of	the	instances	changes.	Our
triggers	are	wrong,	and	it's	up	to	you	to	fix	it	with	the	element()	function.

While	it's	nice	to	have	two	instances--we	can	handle	twice	as	much	traffic
now--we	are	still	far	away	from	being	highly	available	(HA).

Bringing	in	high	availability
With	AWS,	going	HA	can	be	as	simple	as	putting	instances	into	different
subnets	assigned	to	different	availability	zones.	An	availability	zone	is	an
isolated	location	within	one	AWS	region,	and	you	can	look	at	it	as	a
separate	data	center.

We	are	passing	subnet	ID	as	a	variable	to	the	application	module,	and	we
are	passing	exactly	one	subnet	ID.	This	needs	to	be	changed,	that	is,	we
will	update	the	subnet_id	variable	to	be	the	list	of	two	elements.	Then,
depending	on	the	index	of	an	aws_instance	resource,	we	will	assign	either
the	first	or	the	second	subnet	to	it.

First	of	all,	replace	the	subnet_id	variable	with	the	subnets	variable	and
specify	the	type	as	list	to	avoid	anything	else	being	passed	to	the	module:

variable	"subnets"			{	type	=	"list	"}	

If	you	set	the	default	value	of	variable	to	be	[],	then
Terraform	will	understand	that	this	variable	is	a	list.

In	root	template,	we	need	to	change	the	subnet_cidr	variable	to	make	it
availability	zone	aware	and	to	extend	it	to	support	four	subnets:

variable	"subnet_cidrs"	{	

		description	=	"CIDR	blocks	for	public	and	private	subnets"	

		default	=	{	

				"eu-central-1a-public"	=	"10.0.1.0/24",	

				"eu-central-1a-private"	=	"10.0.2.0/24",	

				"eu-central-1b-public"	=	"10.0.3.0/24",	

				"eu-central-1b-private"	=	"10.0.4.0/24"	

		}	

}	

Terraform	doesn't	support	nested	maps	as	of	version	0.8.1,	so	we	have	to
make	this	variable	a	bit	uglier	than	it	should	be	in	a	perfect	world.	Use	this
new	variable	inside	template.tf	(similar	code	for	a	private	subnet	is
omitted):

resource	"aws_subnet"	"public-1"	{	

		vpc_id	=	"${aws_vpc.my_vpc.id}"	

		availability_zone	=	"eu-central-1a"	

		cidr_block	=	"${lookup(var.subnet_cidrs,	"eu-central-1a-public")}"	

		map_public_ip_on_launch	=	true	

}	

resource	"aws_subnet"	"public-2"	{	

		vpc_id	=	"${aws_vpc.my_vpc.id}"	

		availability_zone	=	"eu-central-1b"	

		cidr_block	=	"${lookup(var.subnet_cidrs,	"eu-central-1b-public")}"	

		map_public_ip_on_launch	=	true	

}	

Perhaps	when	you	see	this	slightly	repetitive	code,	you	will	want	to
refactor	it	to	be	a	single	aws_subnet	resource	with	a	count	of	2.	It's	not
forbidden	to	do	so,	of	course,	but	it	would	be	a	rather	hard-to-digest	piece
of	code.	When	you	choose	between	a	minor	duplication	and	adding	more
complexity,	choose	minor	duplication.	It	is	a	harder	choice	when	you	are
dealing	with	it	in	the	programming	world,	but	don't	be	fooled:	writing
Terraform	templates	is	not	real	programming,	it's	more	similar	to	writing
configuration	files.

It's	been	a	long	period	of	time	during	which	Terraform	hasn't	supported
passing	lists	and	maps	as	variables	to	modules.	These	harsh	times	are	gone
and,	starting	from	version	0.7,	you	can	do	it.	So,	let's	do	it	and	pass	a
subnets	list	to	the	application	module!

module	"mighty_trousers"	{	

		source	=	"./modules/application"	

		vpc_id	=	"${aws_vpc.my_vpc.id}"	

		subnets	=	["${aws_subnet.public-1.id}",	"${aws_subnet.public-2.id}"]	

		name	=	"MightyTrousers"	

		keypair	=	"${aws_key_pair.terraform.key_name}"	

		environment	=	"${var.environment}"	

		extra_sgs	=	["${aws_security_group.default.id}"]	

		extra_packages	=	"${lookup(var.extra_packages,	"MightyTrousers")}"	

		external_nameserver	=	"${var.external_nameserver}"	

		instance_count	=	2	

}	

The	only	thing	left	is	to	use	these	subnets	inside	aws_instance.	We	will	need
the	element()	function	again,	as	well	as	the	modulo	math	operation:	we	will
use	the	first	subnet	for	even	instances	and	the	second	one	for	odd
instances:

resource	"aws_instance"	"app-server"	{	

		ami	=	"${data.aws_ami.app-ami.id}"	

		instance_type	=	"${lookup(var.instance_type,	var.environment)}"	

		subnet_id	=	"${element(var.subnets,	count.index	%	2)}"	

			

}	

With	this	code,	we	can	easily	scale	our	application	to	any	number	of
instances,	and	they	will	be	evenly	distributed	among	availability	zones.
Nice	and	easy.	High	availability	achieved.	Well,	almost.	We	need	to	put	a
load	balancer	in	front	of	these	application	servers	first.

Load	balancing	and	simulating
conditionals
If	we	were	not	using	AWS	in	this	book,	or	if	we	wanted	to	go	the	more
complicated	(but	certainly	more	flexible)	way,	we	would	use	our	very	own
load	balancer.	But	we	won't,	because	we	can	simply	take	the	Elastic	Load
Balancer	(ELB)	service	of	AWS	and	put	application	servers	behind	it.

This	means	we	will	add	yet	another	resource	to	the	application	module.
Add	the	following	configuration	right	after	the	null_resource	provisioners:

resource	"aws_elb"	"load-balancer"	{	

		name	=	"application-load-balancer"	

		subnets	=	["${var.subnets}"]	

		security_groups	=	"${aws_security_group.allow_http.id}"]		

	

		listener	{	

				instance_port	=	80	

				instance_protocol	=	"http"	

				lb_port	=	80	

				lb_protocol	=	"http"	

		}	

	

		health_check	{	

				healthy_threshold	=	2	

				unhealthy_threshold	=	2	

				timeout	=	3	

				target	=	"TCP:80"	

				interval	=	30	

		}	

	

		instances	=	["${aws_instance.app-server.*.id}"]	

}	

This	ELB	is	configured	for	the	HTTP	port,	and	it	has	a	health	check	that	will

verify	that	an	instance	is	actually	listening	on	this	port.	It	is	configured	to
balance	the	list	of	application	servers	we	have	and	to	work	in	two	subnets,
already	passed	via	a	variable.

With	ELB	in	place,	we	probably	want	to	output	its	DNS	name	instead	of
the	list	of	public	IP	addresses	of	instances:	also,	because	now	we	don't
have	to	expose	them	to	the	internet.	Remove	the	public_ip	output	and	add	a
new	one	instead:

output	"app_address"	{	

		value	=	"${aws_elb.load-balancer.dns_name}"	

}

Do	this	to	the	root	template	as	well:

output	"mighty_trousers_app_address"	{	

		value	=	"${module.mighty_trousers.app_address}"	

}	

We	cannot	verify	that	everything	works	as	expected	for	one	simple	reason:
we	have	never	installed	anything	that	listens	on	port	80	on	any	of	our
machines.	Let's	modify	our	Puppet	manifest	to	install	and	start	Apache	and
then	reprovision	instances	via	null_resource!

Make	the	contents	of	setup.pp	look	as	follows:

package	{	'httpd':	

		ensure	=>	installed	

}	

service	{	'httpd':	

		ensure		=>	running,	

		require	=>	[

				Package['httpd'],	

],	

}	

This	might	not	be	the	most	sophisticated	Apache	Puppet	setup	you've
seen,	but	it's	enough	to	see	a	default	Apache	static	page	being	served	by	an
instance.

In	order	to	trigger	provisioning,	we	need	to	use	our	old	friend	terraform
taint	command.	Previously,	we've	used	it	only	with	a	single	resource.	It's
not	different	with	a	group	of	resources,	but	you	just	need	to	provide	an
index.	Terraform	doesn't	allow	the	use	of	wildcards	in	taint,	which	is	a
shame,	because	we	have	to	run	the	taint	command	twice	because	of	that:

$>terraform	taint	-module	mighty_trousers	null_resource.app_server_provisioner.0

	

Run	the	Terraform	apply	command	to	get	the	web	server	running!	As	you
have	configured	an	output	to	get	the	hostname	of	ELB,	copy	it	to	your
browser.	You	should	see	the	following	page	in	the	end:

Let's	recap	what	we	did:	we	scaled	up	our	application	by	adding	one	more
instance.	We	then	made	it	highly	available	by	splitting	instances	into	two
different	subnets.	We	have	put	them	behind	a	load	balancer.	More	than
that,	we	configured	these	instances	with	Puppet	without	having	to	destroy
anything!	Apparently,	we	are	getting	very	skilled	at	making	our

infrastructure	more	mature	and	we	are	already	capable	of	performing	some
upgrades	by	combing	Terraform	with	a	configuration	management	tool.

But	there	is	a	catch:	what	if	we	don't	need	ELB	just	yet?	What	if	it's	just	a
development	or	staging	environment	that	needs	only	one	EC2	instance?
Putting	the	single	instance	behind	a	load	balancer	would	be	a	silly	and
wasteful	move!	We	need	to	create	a	load	balancer	only	if	there	is	more
than	one	instance.

Since	Terraform	0.8,	there	is	a	conditionals	support	in	Terraform	DSL,	but
only	inside	interpolations.	But	there	is	still	a	trick	to	make	the	creation	of
resources	conditional.	The	trick	is	quite	trivial,	actually.	We	just	need	to
specify	the	count	attribute	on	a	load	balancer.	Don't	worry;	we	won't	create
multiple	load	balancers.

In	fact,	we	will	create	either	1	or	0	load	balancers.	Terraform	allows	count
to	equal	0,	meaning	that	no	resource	creation	is	needed.	So,	if	we	want	to
skip	the	creation	of	ELB,	we	should	set	count	to	0	in	case	only	one
instance	was	requested.

resource	"aws_elb"	"load-balancer"	{	

		name	=	"application-load-balancer"	

		#	...	

		instances	=	["${aws_instance.app-server.*.id}"]	

		count	=	"${var.instance_count	>	1	?	1	:	0}"	

}	

If	you	are	stuck	with	the	previous	0.8	version,	then	there	is	still	a	way	to
achieve	the	same	result.

We	only	need	to	do	some	simple	string	matching,	with	the	help	of	the
replace()	function	and	two	tiny	regular	expressions:

resource	"aws_elb"	"load-balancer"	{	

		name	=	"application-load-balancer"	

		#	...	

		instances	=	["${aws_instance.app-server.*.id}"]	

		count	=	"${replace(replace(var.instance_count,	"/^[1]{1}$/",	"0"),	"/^[1-9][0-9]*/",	"1")}"	

}	

With	this	code,	if	the	instance_count	is	"1",	the	number	of	ELBs	to	create
will	be	0.	If	it's	anything	other	than	1,	it	will	be	1.	Verify	it	yourself	by
changing	the	instance_count	variable	to	different	values.	Note	that	it	won't
work	with	an	instance_count	that	equals	0	itself,	but	you	can't	avoid
shooting	yourself	in	the	foot	all	the	time.

Perhaps	after	seeing	this	count-based	implementation	of	the	simple	if
statement,	you	are	horrified	or	even	disgusted	by	Terraform.	It's	a	valid
reaction,	but	look	at	it	from	another	angle:	we	managed	to	keep	it	as
declarative	as	it	gets.	This	ugly	double	replace()	line	allows	you	to
determine	the	need	to	create	ELB	automatically,	without	additional
variables.

In	this	case,	adding	another	variable	could	also	be	a	reasonable	choice.
You	could	simply	create	a	variable	named	has_lb	and	use	it	as	a	simple
indicator	of	whether	you	need	ELB	or	not.	And	that's	the	correct	approach
if	you	need	to	do	any	kind	of	conditional	creation	with	Terraform.	You
must	agree,	though,	that	usage	of	regular	expressions	and	chains	of
function	invocations,	as	we	did	earlier,	makes	you	feel	more	proud	of
yourself.

Triggering	Puppet	runs	is	all	nice	and	easy.	If	you	really	want	to	keep	your
infrastructure	toolset	as	spartan	as	possible,	you	could	even	try	to	go
further	with	only	this	approach.	In	reality,	though,	provisioning	and
reprovisioning	machines	only	with	Terraform	is	unlikely	to	be	a	solid
automation	foundation.	It's	not	what	Terraform	was	made	for,	and	you	will
be	much	better	off	if	you	leave	the	configuration	management	part	to	a
tool	built	for	this,	instead	of	making	a	shaky	integration	with	Terraform.

What	Terraform	is	better	at,	though,	is	performing	upgrades	of	a	complete
server	with	a	new	one.	But	in	order	for	Terraform	to	be	able	to	do	it,	you
need	to	follow	a	few	additional	steps.	Let's	talk	about	them	and	about
performing	rolling	updates	with	Terraform.	But,	even	before	that,	let's

learn	what	immutable	infrastructure	is.

Immutable	infrastructure
When	we	had	bare	metal	servers,	it	took	a	bit	of	time	to	provision	them.
Even	today,	if	you	want	to	get	new	hardware,	it	can	take	days	to	get	it
connected	and	running.	Needless	to	say	that	you	would	want	to	keep	them
running	as	long	as	possible,	given	the	cost	of	replacement	or	adding	a	new
one.	Then,	as	automation	is	a	must,	instead	of	configuring	these	bare	metal
servers	by	hand,	a	set	of	configuration	management	tools	appeared.

Even	with	these	tools,	though,	servers	are	prone	to	configuration	drift;
they	can	diverge	a	lot	from	one	another	and	people	can	still	go	via	SSH
and	perform	changes	not	captured	in	infrastructure	code.

Don't	get	me	wrong:	configuration	management	is	still	a	must.	But	the
context	changed	a	bit	after	virtualization	was	hugely	adopted	in	the	form
of	cloud	providers.	The	time	required	to	create	a	server	was	cut	down	to	a
few	minutes,	instead	of	hours	and	days.	More	importantly,	the	time
required	to	recreate	a	server	is	also	really	low,	compared	with	the	bare
metal	world.	So,	why	bother	with	keeping	the	existing	machine	updated	if
you	could	just	destroy	it	and	create	a	new	one	from	scratch?	That's	the
basis	of	a	so-called	immutable	Infrastructure.

What	does	it	give	to	operators?

Little	to	no	configuration	drift:	Your	server	is	created	once	and
is	never	updated,	so	you	can	just	take	a	look	at	the	base	image	to
tell	what	is	(most	likely)	the	state	of	it.

Predictable	and	simple	updates:	Each	change	to	the
configuration	is	captured	and	versioned	in	source	control.	It	is
then	tested	with	tools	such	as	Inspec	and	Test	Kitchen.	Only	then,
is	it	rolled	out	to	environments,	one	at	a	time.

Immutable	infrastructure	goes	hand	in	hand	with	functional	programming
principles:	functional	programming	languages	provide	immutable	data
structures,	just	like	your	servers	are	immutable	once	they	are	created.

Netflix	is	perhaps	the	brightest	example	of	the	adoption	of	this	approach.
As	they	are	one	of	the	biggest	AWS	EC2	users,	they	run	all	of	their
workloads	in	the	cloud	on	virtual	servers.	Their	processes	are	well	covered
in	multiple	blog	posts	in	the	Netflix	technology	blog,	for	example,	AMI
Creation	with	Aminator	(http://techblog.netflix.com/2013/03/ami-creation
-with-aminator.html).	They	go	really	far	with	creating	AMIs:	there	are
multiple	layers	of	them,	each	subsequent	layer	being	baked	from	the	AMI
of	the	previous	one.	In	the	following	diagram,	taken	from	a	Netflix	blog,
you	can	see	what	an	application	server	AMI	consists	of,	for	example:

What	becomes	clear	from	reading	the	Netflix	story,	is	that	the	transition	to
immutable	infrastructure	and	baking	a	ton	of	images	is	not	that
straightforward.	More	than	anything,	immutable	infrastructure	requires	a

http://techblog.netflix.com/2013/03/ami-creation-with-aminator.html

new	set	of	tools	and	techniques	to	work	well.	Baking	new	images	has	to
be	fast,	reliable,	automated,	and	should	be	part	of	a	continuous	integration
and	continuous	delivery	pipeline.	The	process	of	rolling	out	new	images	is
also	different	from	the	traditional	configuration	management	approach.
You	just	wait	till	chef-client	or	Puppet	agent	reruns	in	a	few	minutes	to
apply	changes.	In	fact,	an	image	becomes	a	new	type	of	software	package
you	develop,	and	it	should	be	treated	accordingly.

Another	company	that	pushes	the	whole	throw	away	complete	server	and
create	a	new	one	approach	hard	is,	don't	be	too	surprised,	HashiCorp.	As
already	mentioned,	Terraform	works	with	replaceable	servers	in	mind.
The	way	it	versions	the	state	file	works	best	with	immutable	servers.	Just
think	about	it	for	a	moment:	if	we	taint	the	provisioner	as	we	did	earlier,
what	kind	of	change	will	be	recorded	in	a	version	control	system?	You
might	see	the	change	to	Puppet	manifest,	of	course,	but	what	if	manifests
and	modules	are	coming	from	the	different	location,	separate	from	the
Terraform	repository?	Yes,	you	would	see	that	null_resource	was	recreated,
but	that's	about	it.	What	was	the	reason	behind	the	recreation?	What's	the
new	state	of	your	infrastructure?

It's	a	whole	different	story	if	you	replace	the	AMI	ID.	Now,	you	can
clearly	see	that	your	machines	were	upgraded	from	AMI	A	to	AMI	B.	You
already	know	what	changed	between	these	two	versions.	You	still	have	the
full	overview	of	the	state	and	progress	of	your	infrastructure.	And	look	at
the	aws_ami	data	resource,	built	into	Terraform	-	it	is	perhaps	the	most	(if
not	only)	robust	and	featureful	data	resource	that	Terraform	has.

Of	course,	immutable	infrastructure	is	just	one	way	to	look	at
infrastructure	management.	It's	not	the	only	way	to	do	it,	but	it	is	certainly
a	viable	alternative	to	the	traditional	approach.	Lots	of	hugely	successful
technology	companies	are	very	happy	without	this	approach.	Just	look	at
Stack	Overflow;	it	has	a	handful	of	bare	metal	servers	handling	all	the
production	traffic.	No	VMs,	and	no	constant	server	replacement.

Stack	Overflow	posts	the	full	description	of	the	state	of	their
infrastructure	every	now	and	then.	The	latest	state	is
documented	in	an	article	named	Stack	Overflow:	The

Architecture	-	2016	Edition.	Refer	to	http://nickcraver.com/bl
og/2016/02/17/stack-overflow-the-architecture-2016-edition/.

There	are	trade-offs	to	doing	immutable	infrastructure,	such	as	added
complexity	to	the	whole	toolset	that	you	have	for	your	operations	team.	It
also	can	be	much,	much	slower	than	just	using	configuration	management.
Baking	an	image	is	slow.	Replacing	it	can	also	be	slow.	Certainly,	it	is
really	fast	if	you	jump	on	the	containers	bandwagon,	but	this	only	means
that	you	have	to	introduce	another	half	a	dozen	new	technologies	to	your
organization.

None	of	this	changes	the	fact	that	Terraform	is	a	tool	built	with
immutability	in	mind.	And	it's	not	the	only	tool:	the	HashiCorp	stack	has
another	utility	that	can	be	combined	with	Terraform	in	a	powerful
immutable	infrastructure	combo.	This	tool	is	named	Packer,	and	you	have
to	learn	a	bit	of	it	if	we	want	to	master	Terraform.

http://nickcraver.com/blog/2016/02/17/stack-overflow-the-architecture-2016-edition/

Baking	images	with	Packer
Packer	was	released	back	in	2013	with	the	goal	of	simplifying,
automating,	and	codifying	the	image	creation	process.	It	removes	all	the
pain	from	baking	images	for	different	platforms	by	replacing	many
manual	steps	with	a	single	JSON	template	fed	to	the	CLI.	It	is	written	in
the	Go	programming	language,	just	like	Terraform.	Installing	it	is	a	piece
of	cake--just	download	the	archive	for	your	operating	system	from	https://
www.packer.io/downloads.html	and	extract	the	binary	to	a	directory	available
in	your	$PATH	environment	variable.	Then,	verify	your	installation:

$>	packer	-v

0.12.0

You	are	all	set	up	to	bake	images!	To	do	so,	just	run	packer	build
my_template.json.	It	won't	work,	of	course,	because	we	don't	have	a
template	yet.	Create	the	base.json	file	and	let's	start	filling	it	in.	Our	goal	is
to	bake	a	CentOS	7	AMI	with	all	packages	updated	and	Puppet	installed.

The	only	required	section	for	the	template	is	the	builders	array
definition.	Builders	are	configuration	blocks	of	each	provider	that	you
want	to	bake	an	image	for.	Each	provider	is	different,	and	each	requires
some	kind	of	authorization	to	APIs,	a	few	network	details,	and	so	on.
Some	example	of	builders	are:	AWS	AMI,	Google	Compute	Engine
images,	and	VirtualBox.	We	will	continue	with	using	AWS.	The	amazon-
ebs	builder	is	what	we	are	going	to	use.	There	are	two	other	AWS	builders
in	Packer	that	are	more	advanced	and	not	required	for	our	exercise.

Each	Packer	template	can	have	multiple	builders	defined,
which	allows	you	to	bake	an	image	for	multiple	providers	at
once.

https://www.packer.io/downloads.html

Configuration	for	the	amazon-ebs	builder	looks	as	follows:

{	

		"builders":	[

				{	

						"type":	"amazon-ebs",	

						"ami_name":	"centos-7-base-puppet-{{timestamp}}",	

						"region":	"eu-central-1",	

						"source_ami":	"ami-9bf712f4",	

						"instance_type":	"t2.micro",	

						"ssh_username":	"centos",	

						"ssh_pty":	true	

				}	

]	

}	

If	you	don't	have	default	VPC	in	your	account,	you	will	also	need	to
specify	the	vpc_id	and	subnet_id	keys.	There	is	no	need	to	configure	a
security	group	or	a	key	pair	if	you	don't	want	to:	Packer	will	create	them	if
they	are	not	specified	and	destroy	them	after	the	build	is	done.	Go	ahead
and	start	the	build:

				$>	packer	build	base.json

				amazon-ebs	output	will	be	in	this	color.

				==>	amazon-ebs:	Prevalidating	AMI	Name...

								amazon-ebs:	Found	Image	ID:	ami-9bf712f4

				==>	amazon-ebs:	Creating	temporary	keypair:	

				packer_582c19ae-62d9-5ffd-06c3-ae22db9e7d3c

				==>	amazon-ebs:	Creating	temporary	security	group	for	this	instance...

				==>	amazon-ebs:	Authorizing	access	to	port	22	the	

				temporary	security	group...

				==>	amazon-ebs:	Launching	a	source	AWS	instance...

								amazon-ebs:	Instance	ID:	i-f00f954d

				==>	amazon-ebs:	Waiting	for	instance	(i-f00f954d)	to	become	ready...

				==>	amazon-ebs:	Waiting	for	SSH	to	become	available...

				==>	amazon-ebs:	Connected	to	SSH!

				==>	amazon-ebs:	Stopping	the	source	instance...

				==>	amazon-ebs:	Waiting	for	the	instance	to	stop...

				==>	amazon-ebs:	Creating	the	AMI:	centos-7-base-puppet-1479285166

								amazon-ebs:	AMI:	ami-a0d114cf

				==>	amazon-ebs:	Waiting	for	AMI	to	become	ready...

				==>	amazon-ebs:	Terminating	the	source	AWS	instance...

				==>	amazon-ebs:	Cleaning	up	any	extra	volumes...

				==>	amazon-ebs:	Destroying	volume	(vol-52edcfd8)...

				==>	amazon-ebs:	Deleting	temporary	security	group...

				==>	amazon-ebs:	Deleting	temporary	keypair...

				Build	'amazon-ebs'	finished.				

				==>	Builds	finished.	The	artifacts	of	successful	builds	are:

				-->	amazon-ebs:	AMIs	were	created:

				eu-central-1:	ami-a0d114cf

If	you	read	through	this	log,	you	will	start	appreciating	the	work	Packer
does.	There	are	so	many	steps	that	would	take	tens	of	minutes	to	do	by
hand,	only	to	create	an	AMI	that	is	no	different	from	the	source	image!
With	Packer,	it's	just	15	lines	of	JSON	that	you	can	put	into	source
control,	version	it,	and	collaborate	on	it.

Note	this	part:	"ami_name":	"centos-7-base-puppet-{{timestamp}}".	Here,	the
internal	Packer	variable	timestamp	is	used.	It's	very	handy	to	name	your
AMIs.	We	could	also	define	our	own	variables:

{	

		"variables":	{	

				"environment":	"production",	

				"prefix":	"{{	env	`AMI_NAME_PREFIX`	}}"	

		},	

		"builders":	[

				{	

						"ami_name":	"{{	user	`prefix`	}}centos-7-base-puppet-{{	user	`environment`	}}-{{timestamp}}",	

						"type":	"amazon-ebs",	

						...	

}	

Just	as	with	Terraform,	there	are	many	ways	to	supply	these	variables.
You	could	do	it	inline:

$>	packer	build	-var	'environment=development'

You	could	also	store	them	in	a	file,	as	follows:

{	

		"prefix":	"packt"	

}	

Then,	you	could	use	it	via	a	command-line	argument:

$>	packer	build	-var-file=variables.json

You	could	also	send	them	via	environment	variables,	if	you	configured	the
variable	like	the	"prefix"	variable	shown	earlier.	To	verify	that	the
configuration	was	done	correctly	before	running	the	build,	you	can	use	the
validate	command:

$>	packer	validate	base.json

Template	validated	successfully.

Our	template	is	pretty	useless	though:	it	just	repackages	the	existing	AMI!
To	do	some	real	configuration	of	what	goes	into	this	AMI,	we	should	use
provisioners.	Packer	has	been	around	for	quite	some	time	now,	so	it	has
much	better	support	for	the	various	provisioners	than	Terraform.	It	even
has	built-in	Puppet	provisioners	(masterless	and	with	Puppet	server),	two
types	of	Ansible	provisioners,	Salt	support,	and	many	others.	We	will	stick
with	the	simple	remote	shell	provisioner	though.	But	I	encourage	you	to
try	different	ones	out.

You	can	also	configure	multiple	provisioners	per	each	template.	For
example,	you	could	upload	configuration	files	with	the	file	provisioner
and	then	copy	them	to	the	necessary	locations	with	a	remote	shell
provisioner.	It's	not	an	uncommon	use	case:	the	file	provisioner	of	Packer
can't	use	sudo	privileges,	so	if	you	need	to	upload	a	system	service
configuration,	you	need	to	do	it	in	two	steps.	Add	the	following
provisioner	configuration	right	after	builders:

...	

],	

		"provisioners":	[

				{	

						"type":	"shell",	

						"inline":	[

								"sudo	yum	update	-y",	

								"sudo	rpm	-ivh	http://yum.puppetlabs.com/puppetlabs-release-el-7.noarch.rpm",	

								"sudo	yum	install	puppet	-y"	

]	

				}	

]	

Unfortunately,	Packer	doesn't	have	a	substitute	for	the	handy	Terraform
plan	command.	To	test	whether	your	template	is	working,	you	have	to	run
the	build.	But,	given	that	nonexisting	AMI	can't	do	much	harm	to	the
infrastructure,	the	only	downside	of	it	is	cost--Packer	creates	EC2
instances	in	order	to	create	the	image,	and	these	instances	cost	money.

Run	packer	build	base.json	again	and	get	a	cup	of	coffee--it	takes	a	while
for	the	build	to	finish.	You	probably	won't	want	to	do	it	manually	in	the
future.	Packer	is	perfect	to	be	run	inside	a	continuous	integration	server
such	as	Jenkins	or	GitLab	CI.	Ideally,	you	should	even	try	to	architect	the
complete	pipeline	that	builds	the	image,	tests	it,	and	rolls	it	out	to
production.	But	let's	not	overcomplicate	things	right	now.

After	a	little	while,	Packer	will	report	to	you	about	the	success	of	the
build:

Build	'amazon-ebs'	finished.			

==>	Builds	finished.	The	artifacts	of	successful	builds	are:

-->	amazon-ebs:	AMIs	were	created:

eu-central-1:	ami-12d3167d

With	that,	our	Packer	101	is	finished.	Just	like	Terraform,	the	tools	are
focused	on	doing	exactly	one	job,	and	it	needs	some	tooling	around	it	to
make	it	productive.	One	option	is	to	use	HashiCorp	Atlas--a	paid	service

that	wraps	Packer	and	Terraform	and	provides	hosting	for	your	templates.
Another	option	is,	as	usual,	the	DIY	approach.

Again,	you	had	to	learn	Packer	a	bit	because	that's	the	tool	that	works	best
when	paired	with	Terraform.	It's	also	the	tool	that	makes	immutable
infrastructure	efforts	much	more	enjoyable.	Without	further	ado,	let's	get
back	to	Terraform	and	teach	it	how	to	update	servers	in	an	immutable
fashion!

Rolling	out	AMI	upgrades	with
Terraform
Remember	that	we	used	the	data	resource	"aws_ami"	to	pull	the	latest	AMI
belonging	to	the	AWS	account	configured	in	the	template?	At	that	time,
we	didn't	put	much	effort	into	it,	blindly	pulling	any	existing	AMI	,	as
long	as	it	was	the	latest	updated	one:

data	"aws_ami"	"app-ami"	{	

		most_recent	=	true	

		owners	=	["self"]	

}	

With	Packer	building	our	AMIs,	we	can	put	a	bit	more	effort	into	this
resource.	We	need	to	make	sure	that	it	pulls	the	image	that	is	suitable	for
this	application.	First,	simplify	the	Packer	template:	remove	any	variables
and	make	sure	that	the	"ami_name"	key	looks	as	simple	as	the	following:

"ami_name":	"centos-7-base-puppet-{{timestamp}}",	

Rebake	the	image	and	then	modify	the	Terraform	application	module	to
use	the	following	image:

data	"aws_ami"	"app-ami"	{	

		most_recent	=	true	

		owners	=	["self"]	

		filter	{	

				name	=	"name"	

				values	=	["centos-7-base-puppet*"]	

		}	

}	

From	the	aws_instance	resource,	we	can	now	remove	the	provisioner:	it	was
only	installing	Puppet	on	the	machine,	and	we	already	have	it	installed
inside	the	freshly	baked	AMI:

resource	"aws_instance"	"app-server"	{	

		ami	=	"${data.aws_ami.app-ami.id}"	

		instance_type	=	"${lookup(var.instance_type,	var.environment)}"	

		subnet_id	=	"${element(var.subnets,	count.index	%	2)}"	

		vpc_security_group_ids	=	["${concat(var.extra_sgs,			

		aws_security_group.allow_http.*.id)}"]	

		user_data	=	"${data.template_file.user_data.rendered}"	

		key_name	=	"${var.keypair}"	

		tags	{	

				Name	=	"${var.name}"	

		}	

		count	=	"${var.instance_count}"	

}	

We	are	still	keeping	user_data,	in	case	extra	on-the-boot	modifications	to
the	server	are	required.	Run	the	terraform	apply	command	and	make	sure
that	you've	destroyed	all	previously	created	resources	by	running	the
terraform	destroy	command.	As	a	result,	you	will	get	two	instances	with	an
AMI	created	by	Packer.

Now	to	the	interesting	part:	what	if	we	update	the	AMI?	Rerun	packer
build	base.json,	give	it	a	few	minutes	to	run,	and	then	execute	the	terraform
plan	command	to	see	what	Terraform	is	going	to	do	now:

				$>	terraform	plan

				~	module.mighty_trousers.aws_elb.load-balancer

								instances.#:	""	=>	"<computed>"

				

				-/+	module.mighty_trousers.aws_instance.app-server.0

								ami:																															"ami-7f7fba10"	=>	"ami-707cb91f"	(forces	new	resource)

			

				-/+	module.mighty_trousers.aws_instance.app-server.1

								ami:																															"ami-7f7fba10"	=>	"ami-707cb91f"	(forces	new	resource)

Apparently,	our	instances	will	be	recreated	because	of	the	latest	AMI
change.	Knowing	the	nature	of	Terraform,	it	will	try	to	recreate	them	in
parallel,	leading	to	a	possibly	lengthy	downtime.	This	is	not	what	we
consider	a	smooth	update.	So,	how	do	we	make	it	as	painless	as	possible?

We	talked	about	it	in	one	of	the	initial	chapters,	but	most	likely	you	will
have	already	forgotten	about	the	life	cycle	block,	specifically	the
create_before_destroy	option.	It	will	first	create	a	new	EC2	instance	for	us,
and	only	then,	it	will	remove	the	old	one.	Let's	add	it:

resource	"aws_instance"	"app-server"	{	

		ami	=	"${data.aws_ami.app-ami.id}"	

		#	...	

		count	=	"${var.instance_count}"	

		lifecycle	{	

				create_before_destroy	=	true	

		}	

}	

With	this	in	place,	the	time	required	to	switch	AMIs	will	be	much	shorter.
But	it's	still	not	perfect,	because	we	could	easily	end	up	with	two	instances
being	unavailable	simultaneously.	It	can	be	okayish	for	some	applications,
and	it	can	be	a	complete	disaster	for	others.	What	we	should	do	is	roll
updates	by	replacing	instances	one	by	one.	And	that's	where	we	are	going
to	hit	the	limitations	of	Terraform	pretty	hard	because	it	doesn't	have	an
automated	way	to	perform	such	upgrades.

Terraform	allows	you	to	apply	only	one	resource	using	the	-target
argument.	It	is	quite	handy	because	it	allows	us	to	build	a	chain	of
commands,	each	of	them	changing	only	one	instance,	as	follows:

$>	terraform	apply		-target	"module.mighty_trousers.aws_instance.app-server[0]"

$>	terraform	apply		-target	"module.mighty_trousers.aws_instance.app-server[1]"

It	is	handy,	though,	only	if	you	have	two,	or	maybe	a	dozen	servers.	More
than	15	or	100?	Good	luck	with	doing	this	manually.	We	don't	have	to	do

it	manually	though.	We	can	script	it.

As	a	most	simplistic,	dumb	(and	ugly)	example,	take	a	look	at	this	tiny
Ruby	script:

plan	=	'terraform	plan	|	grep	"\\-/+	module.mighty_trousers.aws_instance.app-server"'	

	

plan.split("\n").each	do	|line|	

		line	=	line.gsub(/.+module/,	"module")	

		components	=	line.split(".")	

		resource	=	"#{components[0..-2].join(".")}[#{components.last}]"	

		puts	terraform	apply	-target	#{resource}'

end	

	

This	script	will	run	the	Terraform	plan	command	and	find	all	the	instances
that	Terraform	wants	to	replace	and	then	loops	through	them,	builds	valid
resource	reference,	and	feeds	it	into	the	terraform	apply	command.	As	a
result,	instances	will	be	replaced	one	by	one,	reducing	the	risk	of
downtime.

This	script	leaves	much	to	be	desired,	of	course.	It	doesn't
stream	output	from	Terraform	commands	till	execution	is
finished,	as	one	example	of	its	roughness.

After	looking	at	this,	even	though	it	is	smallest	example	script	you	might
cry	out	in	horror:	that's	not	the	way	I	want	to	handle	my	infrastructure
updates.	And	you	will	be	right	screaming	so.	But	as	long	as	Terraform
doesn't	have	handlers	for	update	scenarios	built	in,	you	have	to	wrap	it
with	extra	tools	and	scripts,	written	in	a	scripting	language	you	are	most
fond	of.

Update	scenarios	are	different	depending	on	business,	of	course,	so	even	if
and	when	Terraform	gets	new	features	for	updates,	most	likely,	you	will
still	have	to	come	up	with	a	tooling	around	it	in	order	to	make	it	fit	your
organization	in	the	best	way	possible.	It's	a	good	idea	to	wrap	common

operations	to	your	infrastructure	operations	in	a	Makefile	inside	your
Terraform	working	directory.

There	is	another	way	to	update	your	infrastructure:	so-called	blue-green
deployments.

Performing	blue-green
deployments
The	idea	behind	blue-green	deployment	is	that,	instead	of	updating
existing	instances	of	an	application,	you	create	a	complete	brand	new
production	environment	side	by	side	with	the	existing	one.	Then,	if	it
looks	good,	you	switch	the	traffic	to	this	new	environment.	If	nothing
breaks,	you	delete	the	old	one.	The	new	environment	is	called	green,	while
the	existing	one	is	blue.	As	you	might	have	guessed,	the	idea	goes	hand	in
hand	with	the	immutable	infrastructure	concept	and	extends	it	beyond	a
single	server	to	complete	clusters	of	machines.

There	are	two	ways	to	achieve	this	with	Terraform:

The	manual	approach

The	Auto	Scaling	groups	approach

We	will	go	with	the	first	one.	Doing	things	manually	is	not	the	best	way	to
do	things,	but	if	you	are	in	a	non-AWS	environment,	you	might	not	have	a
better	choice.	Elastic	Load	Balancer	in	our	application	module	will	play
the	role	of	the	router	in	the	preceding.	We	need	to	perform	these	steps:

1.	 Create	a	new	group	of	instances
2.	 Switch	traffic	to	the	new	group
3.	 Remove	the	old	group

Start	with	copying	over	the	configuration	of	aws_instance.app-server:

resource	"aws_instance"	"app-server-v2"	{	

		ami	=	"${data.aws_ami.app-ami.id}"	

		#	...	

}	

Apply	the	template	so	Terraform	creates	this	new	group.	After	it	has	been
created,	you	can	verify	that	it	works--run	quick	smoke	tests,	execute	some
Inspec	tests,	and	so	on.	If	it	looks	good,	then	it's	time	to	switch	traffic	by
modifying	the	ELB	config:

resource	"aws_elb"	"load-balancer"	{	

		#	...	

		instances	=	["${aws_instance.app-server-v2.*.id}"]	

		count	=	"${var.instance_count	>	1	?	1	:	0}"	

}	

Then,	modify	the	provisioner:

resource	"null_resource"	"app_server_provisioner"	{	

		triggers	{	

				server_id	=	"${join(",",	aws_instance.app-server-v2.*.id)}"	

		}	

		connection	{	

				user	=	"centos"	

				host	=	"${element(aws_instance.app-server-v2.*.public_ip,	count.index)}"	

		}	

		#	...	

}	

It	will	take	a	few	seconds	to	apply	this	change.	Note	that	there	is	no
interruption	of	the	service:	all	traffic	just	started	flowing	to	new	instances
of	the	app-server-v2	group.	It's	time	to	destroy	the	old	one	by	removing	it
from	the	module	and	applying	the	template	again.

You	could	keep	the	name	of	the	new	instance	group	as	app-server-v2,	but	it
also	could	be	rather	confusing	for	people	not	aware	of	the	update.	We	can
easily	rename	it.	First,	do	it	inside	the	module	template	itself.	Don't	apply
it	just	yet:	it	will	destroy	all	instances	because	the	state	file	is	not	aware	of
renaming.	To	rename	it	inside	the	state	file,	we	can	use	the	terraform	state
mv	command:

$>	terraform	state	mv	module.mighty_trousers.aws_instance.app-server-v2	module.mighty_trousers.aws_instance.app-server

Run	the	terraform	plan	command	to	verify	that	your	instances	are	safe.

This	approach	works	well	if	you	don't	use	AWS	or,	for	some	reason,	you
avoid	using	Auto	Scaling	groups.	There	are	a	few	manual	steps,	but	as
always,	you	can	codify	them	relatively	easily.	If	you	do	use	AWS,	and	you
don't	mind	learning	yet	another	feature	of	it,	then	you	might	be	much
better	off	using	Auto	Scaling	groups.

AWS	Auto	Scaling	groups	(ASG)	allow	you	to	adjust	your	infrastructure
needs	to	the	load.	They	can	automatically	increase	in	size	as	your	usage
grows	and	decrease	back	to	a	certain	amount	of	machines	when	a	traffic
spike	is	gone.	With	ASG,	you	don't	create	instances	by	hand:	you	only
need	to	specify	launch	configuration--consider	it	a	template	that	an
instance	will	be	created	from.	In	addition,	ASG	allows	the	configuring	of
scaling	based	on	metrics	from	CloudWatch	or	Simple	Queue	Service
(SQS).	We	won't	use	this	feature	though,	as	we	are	looking	only	for	blue-
green	deployments	implementation.

An	Auto	Scaling	group	can	have	ELB	in	front	of	it,	so	it	balances	all	the
traffic	to	instances	in	this	group.	If	we	want	to	implement	blue-green
deployment,	we	have	to	use	it.	This	means	that	our	previous	attempt	to
save	costs	with	automatic	resolution	of	the	need	for	ELB	is	going	away:

resource	"aws_elb"	"load-balancer"	{	

		name	=	"application-load-balancer"	

		subnets	=	["${var.subnets}"]	

		security_groups	=	["${aws_security_group.allow_http.id}"]	

		cross_zone_load_balancing	=	true	

listener	{	

				instance_port	=	80	

				instance_protocol	=	"http"	

				lb_port	=	80	

				lb_protocol	=	"http"	

		}	

		health_check	{	

				healthy_threshold	=	2	

				unhealthy_threshold	=	2	

				timeout	=	3	

				target	=	"TCP:80"	

				interval	=	30	

		}	

}	

Remove	the	aws_instance	configuration	and	replace	it	with	launch
configuration:

resource	"aws_launch_configuration"	"app-server"	{	

		image_id	=	"${data.aws_ami.app-ami.id}"	

		instance_type	=	"${lookup(var.instance_type,	var.environment)}"	

	

		security_groups	=	["${concat(var.extra_sgs,	aws_security_group.allow_http.*.id)}"]	

		key_name	=	"${var.keypair}"	

	

		user_data	=	"${data.template_file.user_data.rendered}"	

	

		lifecycle	{	

				create_before_destroy	=	true	

		}	

}			

Now	we	need	to	define	Auto	Scaling	groups	that	use	this	launch
configuration	to	figure	out	how	to	start	instances:

resource	"aws_autoscaling_group"	"app-server"	{	

		vpc_zone_identifier	=	["${var.subnets}"]	

		name	=	"app-server-asg	-	${aws_launch_configuration.app-server.name}"	

		max_size	=	"${var.instance_count}"	

		min_size	=	"${var.instance_count}"	

		wait_for_elb_capacity	=	"${var.instance_count}"	

		desired_capacity	=	"${var.instance_count}"	

		health_check_grace_period	=	300	

		health_check_type	=	"ELB"	

		launch_configuration	=	"${aws_launch_configuration.app-server.id}"	

		load_balancers	=	["${aws_elb.load-balancer.id}"]	

		lifecycle	{	

				create_before_destroy	=	true	

		}	

}	

Try	to	apply	the	template	now,	and	you	will	note	that	Terraform	waits	for
scaling	group	creation	a	bit	too	long.	If	you	were	to	check	the	AWS
Management	Console,	you	would	note	that,	although	both	instances	and
ASG	are	created,	creation	of	ASG	is	not	considered	to	be	finished.	This
happens	because	instances	fail	health	checks	we	defined	for	ELB.	They
fail	because	we	removed	the	provisioner--we	don't	install	Apache
anymore,	so	there	is	no	web	server	running	on	port	80!

Now,	the	real	tricky	part	is	that	we	cannot	use	Terraform	provisioners	if
we	use	the	ASG	approach.	Terraform	can	SSH	only	to	machines	it	knows
about,	but	it	knows	nothing	about	instances	created	through	Auto	Scaling
groups.	These	instances	are	completely	out	of	Terraform's	control!	It's
even	a	bit	sad,	because	that	means	a	big	part	of	our	infrastructure	is	not
managed	as	code:	we	only	manage	launch	configuration	and	ASG	with
Terraform,	but	not	actual	servers.

But	it	is	also	a	good	thing	if	we	want	to	achieve	immutable	infrastructure:
now	we	don't	have	any	other	choice	except	to	replace	complete	machines.
We	could	even	remove	a	key	pair	attribute	in	order	to	launch	configuration
to	ensure	that	instances	are	only	replaced	and	not	updated.

Eventually,	Terraform	will	time	out	with	the	following	error:

*	aws_autoscaling_group.app-server:	"app-server-asg	-	

terraform-201611210821196780533872ad":	Waiting	up	to	10m0s:	Need	at	least	2	

healthy	instances	in	ASG,	have	1

We	need	to	fix	it,	and	there	are	multiple	solutions	to	this	problem:

Edit	user	data	to	install	Apache

Recreate	AMI	with	Packer,	making	Apache	installation	part	of
image	baking

Allow	a	configuration	management	tool	to	install	it

Let's	not	bore	ourselves	with	the	second	and	third	options	and	keep	it
simple.	Make	the	modules/application/user_data.sh.tpl	file	look	as	follows:

				#!/usr/bin/bash

				yum	install	${packages}	-y

				echo	"${nameserver}"	>>	/etc/resolv.conf

				

				cat	<<	EOF	>	/tmp/setup.pp

				package	{	'httpd':

						ensure	=>	installed

				}

				service	{	'httpd':

						ensure		=>	running,

						require	=>	[

								Package['httpd'],

],

				}

				EOF

				puppet	apply	/tmp/setup.pp

We've	embedded	a	complete	Puppet	manifest	into	our	user	data,	so	it	will
be	run	after	the	instance	boot.	If	you	run	the	terraform	plan	command,	it
will	show	you	something	like	the	following:

				-/+	module.mighty_trousers.aws_autoscaling_group.app-server

								arn:																												"arn:aws:autoscaling:eu-central-1:236110368157:autoScalingGroup:8da68b51-5793-453b-a8fb-8b6cefc447b7:

autoScalingGroupName/app-server-asg	-	terraform-201611210821196780533872ad"	=>	

"<computed>"

								#	...

								name:																											"app-server-asg	-	terraform-201611210821196780533872ad"	

=>	"<computed>"	(forces	new	resource)

				

				-/+	module.mighty_trousers.aws_launch_configuration.app-server

								name:																								"terraform-201611210821196780533872ad"	=>	"<computed>"

								#	...

								user_data:																			"810cb11319ecdc0f8d9e8a373763ffbac105d184"	=>	"e3aa616aef2387ebb482c6524aa996c436b74d5b"	(forces	new	resource)

				

				

				Plan:	2	to	add,	0	to	change,	2	to	destroy.

Changing	user	data	forces	launch	configuration	recreation.	And	changing
the	name	of	ASG	forces	recreation	of	ASG.	It	doesn't	destroy	ELB	though,
and	now	for	the	best	part:	remember	we	used	create_before_destroy	for
Auto	Scaling	groups?	Well,	combined	with	wait_for_elb_capacity,	we	will
get	the	following	sequence	from	Terraform:

1.	 The	new	launch	configuration	is	created
2.	 A	new	ASG	is	created
3.	 New	ASG	creates	two	new	instances
4.	 The	ASG	is	not	considered	created	till	both	instances	pass	ELB

health	checks
5.	 Once	they	pass	them,	the	old	ASG	is	removed
6.	 Traffic	flows	to	the	new	ASG!

See	what's	happening?	Every	time	we	change	something	to	launch
configuration,	the	change	will	roll	out	a	form	of	completely	new	group	of
instances	and	traffic	will	be	switched	to	those	instances	automatically	once
they	pass	health	checks.	It's	exactly	the	same	result	we	achieved	with	the
manual	approach	earlier,	but	fully-automated	and	without	any	additional
scripting	from	our	side.	That's	how	you	do	proper	blue-green	deployments

on	AWS	with	Terraform.

Of	course,	you	have	two	downsides,	already	mentioned	earlier:

Your	servers	are	not	captured	in	code

You	cannot	use	Terraform	provisioners	any	more

But	if	your	use	case	benefits	of	blue-green	deployment	are	greater	than
these	two	downsides,	then	Terraform	will	do	the	perfect	job	for	you.

There	is	no	way	you	can	put	ASG	instances	into	your	Terraform	state.	But
what	about	other	changes	to	your	AWS	infrastructure	that	are	not
managed	by	Terraform?	There	are	two	features	of	Terraform	that	can	help
here.

Refreshing	infrastructure
It	could	be	that	someone	updated	the	resource	managed	by	Terraform
manually,	via	AWS	API	or	the	AWS	Management	Console.	If	the
changed	attribute	is	specified	inside	the	template,	then	you	can	fix	it	by
running	the	terraform	apply	command--given	that	Terraform	templates	are
the	source	of	truth	when	it	comes	to	the	state	of	the	infrastructure.	But	if
this	attribute	is	not	managed	by	a	Terraform	template,	then	you	might	still
want	it	to	be	reflected	in	your	state	file.	That's	when	the	terraform	refresh
command	comes	to	the	rescue.

Apply	the	template	and	then	go	to	the	AWS	Console.	Open	the	VPC
section	and	find	the	VPC	Terraform	created.	Right-click	on	this	VPC	and
choose	Edit	DNS	Hostnames.	Then,	change	DNS	Hostnames	to	Yes:

Now,	head	back	to	your	console	and	execute	the	terraform	refresh
command.	Open	the	terraform.tfstate	file	and	verify	that	the	change	in	the
state	file	happened	as	expected:

	"aws_vpc.my_vpc":	{	

																				"type":	"aws_vpc",	

																				"depends_on":	[],	

																				"primary":	{	

																								"id":	"vpc-1d04fc75",	

																								"attributes":	{	

																												...	

																											"enable_dns_hostnames":	"true",	

Periodically	running	the	terraform	refresh	command	might	be	a	good	idea
to	ensure	that	the	state	file	and	actual	infrastructure	are	in	sync.	But	what
if	the	resource	was	never	part	of	the	Terraform	template?

Importing	resources
Sometimes,	resources	are	created	manually.	For	example,	you	might	have
had	an	existing	AWS	infrastructure	in	place	before	you	decided	to
introduce	Terraform	to	your	company.	Now	you	need	to	move	it	somehow
under	Terraform's	control.	One	option	is,	of	course,	to	just	recreate
everything.	Not	all	the	resources	are	that	easy	to	recreate	though.	That's
where	the	terraform	import	command	will	help	us.

If	you	destroyed	it	before,	then	rerun	the	template	to	create	a	new	VPC.
Then,	create	a	new	NAT	gateway	manually	from	the	AWS	Management
Console:

To	import	it,	we	need	to	know	the	ID	of	this	gateway:

Copy	it	and	go	back	to	the	console.	To	add	this	gateway	to	the	state	file,
you	need	to	execute	the	following	command:

				$>	terraform	import	aws_nat_gateway.imported_gateway	nat-034caa3c2000cd7fb						

				provider.aws.region

				aws_nat_gateway.imported_gateway:	Importing	from	ID	"nat-034caa3c2000cd7fb"...

				aws_nat_gateway.imported_gateway:	Import	complete!

						Imported	aws_nat_gateway	(ID:	nat-034caa3c2000cd7fb)

				aws_nat_gateway.imported_gateway:	Refreshing	state...	(ID:	nat-034caa3c2000cd7fb)

				

				Import	success!	The	resources	imported	are	shown	above.	These	are

				now	in	your	Terraform	state.	Import	does	not	currently	generate

				configuration,	so	you	must	do	this	next.	If	you	do	not	create	configuration

				for	the	above	resources,	then	the	next	`terraform	plan`	will	mark

				them	for	destruction.

Pay	attention	to	what	Terraform	tells	you	at	the	end	of	the	import
procedure:	import	does	NOT	create	configuration	for	this	resource,	it	only
adds	it	to	the	state	file	with	the	name	you	choose	(imported_gateway	in	this
case).	If	you	don't	add	it	to	the	template,	then,	during	the	next	Terraform
run,	it	will	be	destroyed.	If	you	don't	want	it	to	be	destroyed	(and	why
would	you),	you	have	to	add	something	similar	to	the	following
configuration	to	your	template:

resource	"aws_nat_gateway"	"imported_gateway"	{	

		allocation_id	=	"eipalloc-1a8c1173"	

		subnet_id	=	"${aws_subnet.private-1.id}"	

		depends_on	=	["aws_internet_gateway.gw"]	

}	

Importing	like	this	can	be	useful	if	you	have	a	really	small	amount	of
resources	outside	the	Terraform	template.	If	you	have	dozens	of	them,
then	this	process	might	become	a	bit	too	repetitive	and	boring.

There	is	another	solution:	a	Ruby	gem	named	terraforming,	which	is
capable	of	generating	both	state	file	and	actual	Terraform	configurations.
It	is	available	on	GitHub	at	https://github.com/dtan4/terraforming.

Installation	is	simple:

$>	gem	install	terraforming

https://github.com/dtan4/terraforming

Now	you	can	use	the	terraforming	command	to	import	various	types	of
resources.	Create	VPC	by	hand	and	try	it	out:

				$>	terraforming	vpc														

				resource	"aws_vpc"	"my-manual-vpc"	{

								cidr_block											=	"10.0.0.0/16"

								enable_dns_hostnames	=	false

								enable_dns_support			=	true

								instance_tenancy					=	"default"

				

								tags	{

												"Name"	=	"my-manual-vpc"

								}

				}

And	to	make	terraforming	return	the	possible	state	file	for	this	vpc,	run	the
following	code:

				terraforming	vpc	--tfstate

				{

						"version":	1,

						"serial":	1,

						"modules":	[

								{

										"path":	[

												"root"

],

										"outputs":	{

										},

										"resources":	{

												"aws_vpc.my-manual-vpc	":	{

Much	more	useful	that	built-in	import	command!	It	is	capable	of	merging
this	state	info	into	the	existing	state	file	as	well:

$>	terraforming	vpc	--state	--merge=./terraform.tfstate

Note	that	terraforming	gem	works	only	with	AWS	resources.	If	you	are

using	another	provider,	then	the	terraform	import	command	is	your	last
hope.

Summary
This	was	the	longest	and	perhaps	most	important	chapter	so	far!	All	these
new	infrastructure	tools	are	useless	if	we	don't	know	how	to	use	them	in
production.

Now	we	know	how	to	scale	our	Terraform	resources	with	count	and	how	to
work	around	a	lack	of	conditional	statements	in	the	HashiCorp
Configuration	Language	with	the	help	of	the	count	property.	You	learned
how	to	reference	resources	grouped	with	count,	how	to	target	them,	and
how	to	provision	them	properly.	We	also	discovered	a	few	more	useful
functions	of	Terraform.

Most	importantly,	you	learned	what	immutable	infrastructure	is	and	what
benefits	it	brings	along	to	modern	operations.	With	the	theory	in	hand,	we
taught	ourselves	how	to	use	yet	another	HashiCorp	tool,	Packer,	and
created	a	few	AMIs	with	it.	And,	as	we	know	that	Terraform	is	perfect	for
immutable	infrastructure,	we	took	a	deep	look	at	multiple	ways	to	do
upgrades	of	complete	instances.	We	did	so	manually,	with	self-written
scripts,	and	we	also	used	Auto	Scaling	groups	of	AWS.	Finally,	you	also
learned	how	to	put	existing	infrastructure	under	Terraform's	control	with
the	refresh	and	import	commands	and	an	external	terraforming	utility.

It	feels	like	we	are	all	set	up	to	rule	the	complete	infrastructure	with	the
help	of	Terraform,	from	development	to	production	environments!	There
is	one	more	thing	though:	it's	a	rare	case	that	only	one	person	works	on
everything	in	a	company,	thus,	collaboration	on	infrastructure	is	also	a
very	important	topic	that	you	should	learn	about.	In	the	next	chapter,	we
will	figure	out	how	to	work	with	Terraform	templates	in	a	team,	how	to
roll	out	updates	without	having	conflicts	with	other	people's	work,	and
how	to	implement	a	complete	continuous	integration	cycle	for	Terraform-
managed	infrastructure.

Collaborative	Infrastructure
By	this	chapter,	you've	learned	how	to	create	and	manage	your
infrastructure	with	Terraform.	However,	all	the	topics	we	have	discussed
apply	only	to	a	single-person	operations	department.	If	you	are	the	only
one	using	Terraform	in	your	team,	then	you	have	all	the	knowledge
already.	Eventually,	operations	teams	will	reduce	in	size,	and	what
required	a	dozen	system	admins	in	the	past	will	require	only	a	couple	of
them,	the	ones	that	are	experienced	in	both	operations	and	software
development.	Even	then,	it's	not	a	single	person,	but	at	least	a	couple	:
having	just	one	infrastructure	engineer	in	a	company	is	an	example	of	a
single	point	of	failure.

And	when	you	have	multiple	colleagues	working	on	Terraform	templates,
you	have	a	whole	new	package	of	problems	to	solve.	How	do	you	store
your	templates?	How	do	you	organize	and	split	them?	Where	do	you	store
them?	And	where	do	you	store	the	state	file?	How	do	you	roll	out	changes
to	production?	And	how	do	you	test	these	changes?

That's	what	this	chapter	is	going	to	be	about.	We	will	start	from	the	basic
setup.	You	will	learn	a	bit	of	version	control	with	Git,	in	case	you	are	not
familiar	with	it.	We	will	proceed	to	different	strategies	for	organizing
templates.	You	will	learn	how	to	avoid	conflicts	when	working	with	the
state	file	and	different	approaches	and	tools	in	order	to	store	it.	We	will
also	take	a	deep	dive	into	Continuous	Integration	pipelines	for	templates,
taking	the	whole	infrastructure	as	code	approach	to	its	maximum.	By	the
end	of	this	chapter,	you	will	be	completely	ready	to	introduce	Terraform
to	your	organization.

Version	control	with	Git	101
Feel	free	to	skip	this	part	if	you	are	already	familiar	with
version	control	and	Git	specifically.

Version	Control	System	(VCS)	simplifies	work	with	constantly	changing
information,	such	as	code.	It	allows	us	to	store	multiple	versions	of	the
same	file,	easily	switch	between	them,	and	check	who	is	responsible	for
which	change.	The	most	popular	VCS	today	is	Git,	initially	created	to
support	Linux	kernel	development.

A	VCS	such	as	Git	has	many	benefits:

You	have	access	to	all	versions	of	all	files	in	the	Git	repository	at
any	time;	it's	almost	impossible	to	lose	any	part	of	a	piece	of	code
or	a	previous	state	of	the	code.

Multiple	developers	can	work	on	one	project	at	the	same	time
without	interfering	with	each	other's	code	and	without	fear	of
losing	any	changes	made	by	colleagues.	In	Git,	the	possibilities	of
collaborative	work	are	unlimited.

To	create	a	repository,	you've	got	to	run	git	init	in	the	project	folder.	To
add	files	in	it,	first	use	git	add	file_name	(or	git	add	.	to	add	all	the	files	at
once)	and	then	git	commit	-m	'description_of_changes_made'.	Any	further
changes	in	the	files	can	also	be	done	with	git	add	and	then	you	use	commit.
You	can	consider	using	commit	to	be	the	same	thing	as	saving	a	version	of
the	file.

Git	has	branches.	You	can	work	in	a	separate	branch	after	creating	it	on

the	basis	of	the	current	one.	By	default,	the	main	branch	is	the	master.	It
is	a	best	practice	for	big	projects	to	develop	a	new	feature	in	an	individual
branch,	and	when	it's	done,	merge	the	changes	into	the	main	branch.

A	git	repository	may	have	a	remote	copy.	You	can	send	commits	there
using	git	push	repository_name	branch_name	and	get	them	back	with	git	pull
repository_name	branch_name.

This	is	how	developers	work	on	their	computers	and	synchronize	all	the
changes	using	a	remote	repository.	In	one	picture,	the	simplified	workflow
looks	as	follows:

There	are	two	repositories	in	sync	in	this	image:	the	local	repository	and
the	remote	repository.	All	work	is	done	inside	the	local	repository,	as
follows:

1.	 The	developer	creates	a	new	branch	from	a	master	branch.
2.	 Commits	changes	to	a	new	feature	branch.
3.	 Pushes	this	branch	to	the	remote	repository.
4.	 After	code	review,	this	branch	is	merged	into	the	master	branch	in

the	remote	repository.
5.	 Finally,	changes	to	the	master	branch	are	pulled	to	the	local

repository's	master	branch,	and	the	cycle	starts	again.

There	are	multiple	services,	available	in	the	form	of	Software	as	a	Service,
as	well	as	enterprise-hosted	software,	that	dramatically	simplify	all	Git-
related	operations.	Services	like	this	provide	remote	hosting	of	Git
repositories,	mechanisms	to	collaborate	on	changes,	and	hundreds	of
integrations	with	other	tools.

Undoubtedly,	the	most	famous	service	like	this	is	GitHub,	where	lots	of
open	source	projects	are	stored	and	maintained,	including	all	HashiCorp
products.	GitHub	revolutionized	the	way	people	work	on	open	source,	but
it	has	a	strong	competition	today	in	the	form	of	BitBucket	(widely	used	in
enterprise	environments)	and	GitLab.

Moving	templates	to	Git
Traditionally,	code	in	technical	books	uses	GitHub	for	a	good	reason:
everyone	knows	it,	and	it's	free	for	open	source	(or	just	public)
repositories.	We	are	going	to	use	GitLab	though.	First,	it's	free	for	both
public	and	private	projects.	Second,	it	has	some	features	that	GitHub
lacks,	and	we	will	need	them	for	this	chapter:	more	on	this	later.

You	could	skip	this	section	as	well,	but	better	if	you	don't.	We
will	go	through	all	the	files	that	we	have	created	in	previous
chapters	and	remove	everything	not	needed.

This	means	that	before	proceeding	further,	you	will	need	to	get	yourself	an
account	at	https://about.gitlab.com/	(you	can	use	your	GitHub	account	to
log	in	to	GitLab	with	just	few	clicks).

All	code	samples	will	still	be	available	at	https://github.com/
as	well.

We	will	start	by	doing	a	revision	(see	what	I	did	there?)	of	all	the	files	we
have	so	far.	All	the	code	written	previously	in	the	book	will	be	publicly
available	on	GitLab.

Go	to	your	directory	and	run	git	init	to	initialize	a	new	Git	repository.
Let's	check	what	Git	wants	us	to	add	to	the	repository:

				$>	git	status

				On	branch	master

				

				Initial	commit

				

				Untracked	files:

						(use	"git	add	<file>..."	to	include	in	what	will	be	committed)

				

https://about.gitlab.com/
https://github.com/

										.terraform/

										base.json

										development.tfvars

																custom_data_source.rb

										graph.png

										id_rsa.pub

										modules/

										playbook.yml

										rolling_update.rb

										specs/

										template.tf

										terraform.tfstate

										terraform.tfstate.backup

										variables.tf

				

				nothing	added	to	commit	but	untracked	files	present	(use	"git	add"	to	track)

We	decided	to	perform	rolling	updates	with	Auto	Scaling	groups,	thus	we
don't	need	rolling_update.rb	anymore.	We've	also	switched	to	using	only
Puppet,	which	means	playbook.yml	needs	to	go	too.	Storing	the	graph	image
inside	this	repository	is	meaningless:	throw	it	away	as	well.	Also,	remove
the	specs/	folder:	we	will	revise	our	approach	to	test	servers	later.	We
won't	use	an	external	data	source,	which	means	that	customer_data_source.rb
is	obsolete.

As	you	might	remember,	Terraform	installs	local	modules	by	making
symlink	to	the	.terraform	directory.	It	should	not	be	inside	the	Git
repository.	We	can	make	it	invisible	for	Git	by	creating	the	.gitignore	file
with	the	following	content:

.terraform/

This	is	what	the	list	of	files	for	your	first	commit	needs	to	look	like:

.gitignore

base.json

development.tfvars

id_rsa.pub

modules/

template.tf

terraform.tfstate

terraform.tfstate.backup

variables.tf

After	this	small	cleanup,	we	can	commit	our	command	as	follows:

$>	git	add	.

$>	git	commit	-m	"Initial	commit"

Now	configure	your	remote	repository	and	push	it	there:

$>	git	remote	add	origin	git@gitlab.com:Fodoj/packt-terraform-book.git

$>	git	push	origin	master

You	can	get	a	link,	such	as	git@gitlab.com,	inside	a	GitLab	web	interface
on	the	projects	page.	In	the	earlier	example,	Fodoj	is	the	author's	username
and	packt-terraform-book	is	the	name	of	the	repository.

Great!	Now	all	the	code	we've	written	so	far	is	version	controlled!	We	can
do	changes	to	the	template,	run	the	terraform	apply	command,	and	commit	it
to	the	repository.	Our	colleagues	can	pull	these	changes	and	make	their
own	changes	as	well.	It's	already	so	much	better	than	what	we	had	before.

Note	that	all	the	smaller	steps	will	not	be	present	in	the	commit	history.	You
have	to	do	them	yourself	if	you	really	want	to	learn	how	to	use	Terraform.

You	can	download	it	from	the	following	repository	if	you
were	too	lazy	to	write	it	yourself	during	the	previous
chapters:	https://gitlab.com/Fodoj/packt-terraform-book/tree/m
aster

https://gitlab.com/Fodoj/packt-terraform-book/tree/master

Protecting	secrets	in	a	Git
repository
Terraform	doesn't	provide	any	built-in	way	of	securing	your	state	file.
Neither	is	there	a	way	to	secure	only	some	part	of	it	or	even	provide
encrypted	data	inside	your	templates.	And	it's	a	shame	because,	sooner	or
later,	you	will	have	to	use	some	kind	of	secrets	with	your	templates:
passwords,	API	keys,	and	others.	If	you	plan	to	store	your	state	file	in	the
git	repository,	it's	important	to	protect	it.	The	easiest	solution	is	to	encrypt
the	whole	state	file,	store	the	encrypted	version	in	the	repository,	and
distribute	the	key	for	decryption	with	your	team	members.

You	could	make	this	task	easier	with	the	help	of	a	tool	named	terrahelp.
Terrahelp	is	a	small	CLI	written	in	Go	that	simplifies	the	encryption	and
decryption	of	your	Terraform	state	files	(and	not	only	the	state	files).	It
has	a	nice	integration	with	Vault,	yet	another	HashiCorp	tool,	this	time	in
order	to	manage	secrets.	Don't	worry,	we	won't	use	Vault,	it's	rather	a
complex	tool	that	deserves	it's	own	book.

Starting	from	version	0.8,	Terraform	has	a	built-in	support
for	Vault	as	a	source	of	data.

Download	terrahelp	binary	from	GitHub	Releases	at	https://github.com/ope
ncredo/terrahelp/releases,	and	make	it	available	in	your	$PATH.	Now	you
can	use	the	terrahelp	encrypt	command	to	encrypt	the	complete	state	file
like	this:

$>	terrahelp	encrypt	-file	terraform.tfstate	--simple-key	AES256Key-32Characters0987654321

	

https://github.com/opencredo/terrahelp/releases

After	you	run	it,	your	terraform.tfstate	file	will	look	similar	to	this:

@terrahelp-encrypted(90EYsi7dEgTqcwN63AePssKjIUF3nqJq4c9hFFnvNQ63eJwL0ZmMZL

8AUmUjsqCpho3af13DKjKTU3vQ8K8qMqgm70ToYBVYki6+8vq7nmPt5MGojhfPclAkrLmiestZ

SsTYVhmDbsykX/4zkCME29...many-more-symbols

The	unencrypted	version	was	put	in	a	file	named
terraform.tfstate.terrahelpbkp	for	your	convenience,	in	case	you	forget
your	encryption	key.	To	avoid	creating	this	file,	add	the	--nobackup	option:

$>	terrahelp	encrypt	-file	terraform.tfstate	--simple-key	

AES256Key-32Characters0987654321	--nobackup

The	encrypted	state	file	can	be	safely	stored	in	a	remote	repository;	only
people	who	know	the	key	(AES256Key-32Characters0987654321)	will	be	able	to
decrypt	it.	The	workflow	for	your	Terraform	procedure	is	the	following:

1.	 Pull	the	latest	changes	from	the	remote	repository.
2.	 Decrypt	the	state	file.
3.	 Run	the	terraform	apply	command.
4.	 Encrypt	the	state	file	with	the	same	key.

Many	things	can	go	wrong	during	this	process.	You	could	forget	to
encrypt	the	file	and	push	the	plain	text	to	the	repository.	You	could
streamline	this	workflow	by	providing	a	good	old	Makefile,	but	it	would
not	completely	prevent	bad	things	from	happening.	It	would	be	much	nicer
to	encrypt	and	decrypt	state	file	automatically,	without	any	additional
actions	from	the	developer	who	modifies	the	Terraform	templates.

That's	where	a	tool	named	git-crypt	becomes	very	handy,	as	it	implements
exactly	the	mechanism	just	described.	It's	stored	on	GitHub	at	https://gith
ub.com/AGWA/git-crypt	and	written	in	C++.	Sadly,	there	are	not	ready-to-use
packages	of	git-crypt;	we	have	to	compile	it	ourselves.

https://github.com/AGWA/git-crypt

If	you	are	a	happy	owner	of	Mac,	then	you	can	install	git-
crypt	as	brew	install	git-crypt.

	

Before	installing,	you	should	have	a	C++	compiler	(for	example,	gcc),
Make	and	OpenSSL	development	files	(libssl-dev	or	openssl-devel
package,	depending	on	your	Linux	distribution)	installed.	You	also	need
Git	newer	than	1.7.2.	Installation	is	easy	after	all	requirements	are	met:

$>	git	clone	https://github.com/AGWA/git-crypt.git

$>	cd	git-crypt

$>	make

$>	sudo	make	install	PREFIX=/usr/local

Verify	successful	installation	with	git-crypt	help	command.

The	version	of	git-crypt	used	for	this	chapter	is
788a6a99f4289745e6bd12fae2ad8014af320a4f.	It's	a	git	commit	hash.

To	configure	git-crypt	to	manage	the	state	file,	we	need	to	create	a
.gitattributes	file	in	our	repository	with	this	content:

*.tfstate	filter=git-crypt	diff=git-crypt

*.tfstate.backup	filter=git-crypt	diff=git-crypt

Run	git-crypt	init	at	the	root	of	Terraform	repository.	There	are	two	ways
you	can	use	git-crypt:	with	a	key	shared	among	your	colleagues	or	by
encrypting	data	with	the	personal	key	of	each	colleague.	You	should	use
the	second	option,	but	for	the	purpose	of	this	demonstration,	we	will	stick
with	the	first	one.	Somewhere,	create	a	text	file	with	a	key	in	it	(for
example,	generate	it	with	the	ssh-keygen	command)	and	use	this	file	to	set
up	the	encryption:

$>	git-crypt	export-key	/path/to/secret/file

Because	the	git	commit	history	already	has	the	state	file	in	it,	you	need	to
force	encryption	the	first	time	you	use	git-crypt:

$>	git-crypt	status	-f

Now	add	the	changed	state	file	and	the	backup	of	it	to	new	commit	and	push
them	to	your	repository:	you	will	note	that	it's	impossible	to	see	its
contents	on	GitLab.	If	you	clone	the	repository	to	your	machine,	the	file
will	also	be	encrypted	until	you	unlock	it:

$>	git-crypt	unlock	/path/to/secret/file

	

You	need	to	do	it	just	once.	After	the	initial	setup,	your	files	will	be
automatically	encrypted	when	you	commit	and	push	them	and	decrypted
when	you	pull	it	from	the	remote	repository.	No	chance	of	accidental	plain
text	secret	data	commits!	It's	the	same	thing	you	would	do	with	terrahelp
and	Makefile,	but	completely	transparent.

Storing	both	the	templates	and	state	files	in	a	git	repository	works	well
when	you	have	just	a	few	people	working	on	them.	You	can	always	see
who	changed	what	in	templates	and	the	state	of	the	infrastructure.	Git	is
not	the	only	state	file	storage	supported	by	Terraform	though.	There	are
many	other	options	for	remote	storage	and	other	full	APIs	for	working
with	them.

Storing	state	files	remotely
As	you	know,	by	default,	Terraform	will	store	the	state	file	on	your	local
disk	and	you	have	to	figure	out	yourself	how	to	distribute	it	within	your
team.	One	option	you	learned	is	to	store	it	in	the	git	repository:	you	get	the
workflow,	you	get	the	versioning	and	you	even	get	some	level	of	security
on	top.	But	there	is	also	a	concept	of	remote	state	provided	by	Terraform.

The	idea	is	that,	before	you	start	applying	your	templates,	you	configure	a
remote	storage.	After	that,	your	state	file	will	be	pulled	and	pushed	from	a
remote	facility.	There	are	11	backends	for	your	state	provided	by
Terraform:	Consul,	S3,	etcd,	Atlas,	and	others.	You	will	learn	how	to	use
Simple	Storage	Service	(S3)	for	this	purpose.

Atlas	is	a	commercial	offering	from	HashiCorp.	One	part	of
it	is	named	Terraform	Enterprise:	it	combines	secure
remote	state	storage,	versioning	of	state	file	changes,	logs	of
Terraform	runs,	and	some	other	features.	It	is	well	integrated
with	GitHub.	You	could	use	it	as	a	ready-to-go	solution,	or
you	could	keep	reading	this	book	to	learn	how	to	implement
all	these	features	yourself	without	spending	any	extra	cash,
and	little	to	no	time	on	implementation.

S3	is	another	AWS	service.	It's	an	object	storage:	you	can	throw	into	it	as
many	files	you	like.	Instagram	uses	it	in	order	to	store	photographs,	and
many	other	companies	use	it	for	many	other	tasks.	We	will	use	it	to	store
the	Terraform	state	file.	Why?	Because	it	has	many	nice	features,	such	as
the	following:

Versioned	buckets	(more	on	this	in	a	second)

Flexible,	powerful	access	controls

	

Storage	on	S3	is	split	into	buckets:	consider	them	as	a	separate	disk
(though	it's	not	a	completely	correct	analogy).	Inside	buckets,	you	can
have	folders	(actually,	there	are	no	real	folders	on	S3)	and	objects.	Each
object	has	a	key:	consider	it	as	a	filename.	A	bucket	can	be	versioned;	it
means	that	all	objects	in	this	bucket	will	be	stored	as	well	and	you	can
configure	for	how	long	they	are	stored	and	how	many	versions	will
remain.

Access	to	S3	is	configured	in	the	same	way	as	any	other	AWS	service:
with	IAM	service.	It	allows	you	to	set	per-object	permissions	for	a	user	in
your	AWS	account,	as	well	as	a	server	role,	and	so	on.	Very	powerful
indeed.

Before	using	it	with	Terraform,	we	need	to	create	a	bucket,	of	course.	You
could	create	this	bucket	with	Terraform	itself,	but	that	would	become	a	bit
of	a	chicken	and	an	egg	problem:	if	Terraform	creates	a	bucket,	then
where	is	the	state	file	for	the	template	that	creates	this	bucket	stored?	In
another	bucket?	Oops,	infinite	loop.

Go	to	AWS	console,	choose	S3	service,	and	create	a	bucket:

Don't	click	on	Create!	Instead,	click	on	Set	up	Logging	first:	it	will	allow
us	to	audit	who	accesses	this	bucket,	performs	which	changes	and	when.

You	need	a	separate	bucket	for	logs,	so	create	it	in	advance	in	the	same
AWS	region	as	the	bucket.	Note	that	bucket	names	are	unique	across
AWS,	so	you	won't	be	able	to	create	a	packt-terraform	bucket.

Use	a	drop	of	imagination	and	pick	the	name	yourself.

After	the	bucket	is	created,	click	on	it	in	the	bucket	list	and	then	click
Properties	at	the	top	right.	You	need	to	select	Enable	Versioning:

After	versioning	is	enabled,	all	versions	of	all	objects	in	this	bucket	will	be
stored.	It's	a	bit	wasteful	to	store	all	the	versions	though.	You	probably

don't	care	much	about	a	state	file	version	from	half	a	year	ago,	and	you
don't	want	to	pay	to	store	it	in	S3.	To	solve	this	problem,	create	a	new
Lifecycle	Rules	for	this	bucket:	the	bucket	is	right	under	the	Versioning
tab	in	Properties.	In	the	following	screenshot,	I	chose	to	remove	all
versions	older	than	one	month:

We	are	all	set	up	to	use	this	bucket	as	a	remote	state	storage!	Head	back	to
your	console,	remove	the	existing	state	files,	and	run	this	command	to
enable	the	remote	storage:

$>	terraform	remote	config	\

		-backend=s3	\

		-backend-config="bucket=packt-terraform"	\					

		-backend-config="key=mighty_trousers/

			terraform.tfstate"	\

		-backend-config="region=eu-central-1"

Remote	state	management	enabled

Remote	state	configured	and	pulled.

Note	the	key	option:	we	can	store	multiple	state	files	in	the	same	bucket.

Now	go	ahead	and	run	the	terraform	apply	command.	After	it	is	finished,
your	state	file	will	be	uploaded	to	S3	bucket.	Run	the	terraform	destroy
command	right	after	that	just,	so	the	new	version	is	created	on	S3	and
head	to	AWS	console	to	verify	that	both	versions	are	indeed	stored	(click
on	Show	on	the	top	to	show	the	versions):

We	have	a	remote	versioned	secure	storage	for	state	file	decoupled	from
the	git	repository	with	actual	Terraform	templates!

Even	with	remote	storage,	the	state	file	is	still	cached	locally
on	your	machine	inside	the	.terraform	directory	in	your
working	directory.

Using	S3	gives	you	a	few	extra	benefits.	For	example,	you	could	use
events	features	that	allow	you	to	trigger	some	events	on	each	change	to	a
particular	object	or	group	of	objects.	Want	to	send	notifications	about	the
state	file	updates	to	the	Slack	channel?	Easy.

S3	remote	storage	also	gives	you	the	benefit	of	an	encrypted	state	file,
which	you	can	enable	with	the	encrypt	option.	Try	it	out	yourself	as	an
exercise.

I	must	admit	that	all	of	this	is	really	easy	to	do	with	just
GitLab/GitHub	storage	with	Continuous	Integration	on	top.
But	in	the	case	of	S3,	you	don't	need	to	configure	anything
additional.

	

Connecting	remote	states
together
Up	until	now,	we	naively	stored	all	of	our	Terraform	code	in	a	single
repository.	We	had	a	single	template	responsible	for	creating	a	network,
routes,	virtual	machines,	security	groups,	and	everything	else.	It	works
pretty	well,	provided	you	have	a	single	application	with	modest
infrastructure	around	it.	A	single	VPC,	a	few	subnets,	a	small	database,
and	a	couple	of	instances:	with	this	scale,	there	are	few	reasons	to	go
beyond	the	single	repository	for	all	the	infrastructure	templates.

If	you	are	part	of	a	large	organization,	this	approach	can	get	you	only	so
far.	Companies	that	heavily	rely	on	AWS	tend	to	have	dozens	of	use	cases
for	many,	various	services.	Only	the	IAM	service	has	quite	a	few	entities
to	manage:	roles,	policies,	users,	groups,	and	so	on.	Normally,	there	are
many	roles	for	different	servers	and	even	more	policies	for	these	roles.
The	network	is	also	kind	of	complicated;	at	the	very	least,	you	would	have
one	VPC	per	environment	or	even	one	per	product	per	environment.

The	problem	becomes	even	more	evident	if	there	are	multiple	providers	of
infrastructure.	While	you	might	have	your	virtual	machines	on	EC2,	there
could	be	other	parts	located	elsewhere.	For	example,	you	could	use	a
service	different	than	the	AWS	Route53	DNS	service,	or	some	workloads
could	be	located	in	a	bare	metal	servers	provider,	such	as	Packet.	All	of
this	is	hardly	manageable	via	a	single	Terraform	repository.	There	are	two

steps	to	make	Terraform	templates	easy	to	maintain	and	reuse:

Slice	templates	into	different	levels

Build	a	collection	of	reusable	modules

Once	you	note	that	your	templates	have	grown	fat	and	nasty,	the	first	thing
you	should	do	is	to	slice	them	into	different	levels	and	then	keep	each
level	in	a	different	repository	and	different	state	file.	Configuration	for
services	such	as	IAM	is	global	for	all	AWS	accounts,	and	it	makes	much
more	sense	to	manage	it	centrally,	instead	of	spreading	it	over	multiple
repositories.

There	is	a	special	provider	in	Terraform	named	Terraform	Oops,	which
has	a	data	resource	capable	of	fetching	outputs	from	remote	state	files,	and
it	works	with	all	the	remote	storage	backends	that	Terraform	has.	Let's
learn	how	to	use	it	by	taking	the	IAM	example	described	earlier.	The	IAM
service	is	responsible	for	the	fine-grained	permissions	setup	for	all	AWS
services	for	users,	groups	of	users,	and	server	roles.	The	last	one	is	really
important:	on	EC2,	you	should	never	use	access	keys	to	let	servers	talk	to
other	AWS	services.	Instead,	IAM	roles	must	be	used.

In	addition,	let's	also	refactor	away	the	complete	network	setup.	In	the
end,	we	will	end	up	with	something	like	this:

Note	the	RDS	(Relational	Database	Service).	As	an	exercise,	try	to
implement	it	yourself,	after	we	are	done	with	IAM	and	VPC.

Create	another	two	folders	on	your	machine:	packt-terraform-iam	and	packt-
terraform-vpc.	Initialize	a	git	repository	in	both	of	them.	We	will	start	with

packt-terraform-iam.	The	final	code	will	be	available	for	download	on
GitLab	at	https://gitlab.com/Fodoj/packt-terraform-iam.

Create	a	folder	named	policies.	That's	where	we	are	going	to	store	all	the
JSON	definitions	of	the	various	policies	we	have.	Right	inside,	create	a
file	named	cloudwatch=@put_metric.json	with	the	following	content:

{	

		"Version":	"2012-10-17",	

		"Statement":	[

				{	

						"Action":	[

								"cloudwatch:PutMetric"	

],	

						"Effect":	"Allow",	

						"Resource":	"*"	

				}	

]	

}	

This	policy	will	allow	us	to	put	metrics	to	CloudWatch:	monitoring	and
log	service	from	AWS.	If	we	want	EC2	instance	to	use,	we	need	to	assign
a	role	to	it,	and	this	role	should	have	the	policy	mentioned	earlier	attached
to	it.

Note	the	naming	convention:
$serviceName=$resourveName@$actionName.	Thus	makes	it	much
easier	to	find	out	which	policy	does	what	just	from	the	file
name.	This	naming	convention	scales	well	for	complex
policies	with	dozens	of	lines	of	code.

In	addition,	we	need	a	policy	that	allows	the	assumption	of	this	role.
Create	another	file	policies/sts=@assume_role.json:

{	

		"Version":	"2012-10-17",	

		"Statement":	[

				{	

						"Sid":	"",	

https://gitlab.com/Fodoj/packt-terraform-iam

						"Effect":	"Allow",	

						"Principal":	{	

								"Service":	"ec2.amazonaws.com"	

						},	

						"Action":	"sts:AssumeRole"	

				}	

]	

}	

Now,	let's	write	a	template	that	creates	a	role,	an	instance	profile,	and
policy	for	the	role.	It	also	returns	the	role	name	as	an	output;	otherwise,	we
won't	be	able	to	retrieve	it	from	the	remote	state:

resource	"aws_iam_role"	"base"	{	

		name	=	"base"	

		assume_role_policy	=	"${file("./policies/sts=@assume_role.json")}"	

}	

resource	"aws_iam_instance_profile"	"base"	{	

		name	=	"base"	

		roles	=	["${aws_iam_role.base.name}"]	

}	

resource	"aws_iam_policy"	"cloudwatch-put-metric"	{	

		name	=	"cloudwatch=@put_metric"	

		policy	=	"${file("./policies/cloudwatch=@put_metric.json")}"	

}	

resource	"aws_iam_policy_attachment"	"cloudwatch-put-metric-attachment"	{	

		name	=	"cloudwatch=@put_metric	attachment"	

		roles	=	["${aws_iam_role.base.name}"]	

		policy_arn	=	"${aws_iam_policy.cloudwatch-put-metric.arn}"	

}	

output	"base-role-name"	{	

		value	=	"${aws_iam_role.base.name}"	

}	

Do	NOT	apply	this	template	yet.	We	need	the	state	to	be	stored	remotely,
so	first	of	all	configure	the	remote	storage	using	the	same	S3	bucket:

				terraform	remote	config	\

								-backend=s3	\

								-backend-config="bucket=packt-terraform"	\

								-backend-config="key=iam/terraform.tfstate"	\

								-backend-config="region=eu-central-1"

Now	you	can	apply	the	template.	Note	that	even	though	IAM	is	a	global
service,	Terraform	will	still	ask	you	for	the	AWS	region.

We	have	a	remote	state	that	can	be	used	inside	the	MightyTrousers
application!	Add	a	new	variable	to	the	application	module,	name	it
iam_role,	and	use	inside	the	launch	configuration.	Then,	inside	template.tf,
just	before	invoking	the	module,	add	this	configuration:

data	"terraform_remote_state"	"iam"	{	

				backend	=	"s3"	

				config	{	

								bucket	=	"packt-terraform"	

								key	=	iam/terraform.tfstate	

								region	=	eu-central-1	

				}	

}	

Then	pass	it	to	the	module:

module	"mighty_trousers"	{	

		source	=	"./modules/application"	

		#	...	

		iam_role	=	"${data.terraform_remote_state.iam.base-role-name}"	

}	

It's	done!	You	can	verify	that	the	role	name	is	pulled	from	the	remote	state
by	running	the	terraform	plan	command.	Now	it's	time	to	move	the
network	away	as	well.	The	final	code	is	on	GitLab	at	https://gitlab.com/Fo
doj/packt-terraform-vpc.

Move	the	vpc_cidr	and	subnet_cidr	variables	from	variables.tf	to	a	new
repository	packt-terraform-vpc	in	the	new	variables.tf	file.	Then,	simply
move	all	VPC	configuration:	VPC,	subnets,	route	table,	and	Internet
gateway	to	the	packt-terraform-vpc/template.tf	file.	Finally,	add	a	few

https://gitlab.com/Fodoj/packt-terraform-vpc

outputs	for	this	template:

output	"public-subnet-1-id"	{	

		value	=	"${aws_subnet.public-1.id}"	

}	

output	"public-subnet-2-id"	{	

		value	=	"${aws_subnet.public-2.id}"	

}	

output	"vpc_id"	{	

		value	=	"${aws_vpc.my-vpc.id}"	

}	

Don't	forget	to	configure	the	remote	destination:

				terraform	remote	config	\

								-backend=s3	\

								-backend-config="bucket=packt-terraform"	\

								-backend-config="key=vpc/terraform.tfstate"	\

								-backend-config="region=eu-central-1"

Once	again,	apply	the	template	and	head	back	to	MightyTrousers.	Add
another	data	source:

data	"terraform_remote_state"	"vpc"	{	

		backend	=	"s3"	

		config	{	

				bucket	=	"packt-terraform"	

				key	=	"vpc/terraform.tfstate"	

				region	=	"eu-central-1"	

		}	

}	

Use	this	data	source	inside	the	module:

module	"mighty_trousers"	{	

		source	=	"./modules/application"	

		vpc_id	=	"${data.terraform_remote_state.vpc.vpc_id}"	

		subnets	=	["${data.terraform_remote_state.vpc.public-subnet-1-id}",

}	

Don't	forget	to	update	the	default	security	group	to	use	remote	vpc_id	as
well.

We've	decoupled	IAM	and	VPC	management	from	the	application
template	completely.	Developers	can	focus	on	the	template	for	the
software	they	write	and	AWS	administrators	can	design	and	update
network	and	permissions	in	parallel.

Developers	are	not	exposed	to	this	level	of	configuration	if	administrators
don't	want	them	to	be.	In	the	background,	the	IAM	and	VPC	repositories
can	grow	a	lot	by	adding	more	and	more	policies,	roles,	users,	and
networks.	All	these	changes	will	be	invisible	to	the	authors	of	the
application	template,	as	long	as	remote	states	of	the	IAM	and	VPC
repositories	still	return	outputs	it	expects.

We've	slimmed	down	an	application	template	a	lot,	but	there	is	still	a	big
piece	of	code	that	doesn't	really	belong	to	the	application	template
repository:	the	application	module	itself.

Storing	modules	remotely
We've	stored	the	application	module	in	the	very	same	directory	where	our
main	Terraform	template	resides.	It	makes	it	impossible	to	reuse:	if	there
is	a	new	application	in	the	company	that	requires	the	same	infrastructure
(meaning	the	same	module),	then	we	cannot	easily	use	it.

Remember	the	source	attribute	of	the	module?

module	"mighty_trousers"	{	

		source	=	"./modules/application"	

Well,	it	turns	out	that	it	doesn't	have	to	be	a	path	to	a	local	directory.	In
fact,	there	are	multiple	supported	sources	for	modules:

GitHub

BitBucket

Generic	Git	and	Mercurial	repositories

HTTP	URLs

S3	buckets

Storing	modules	in	one	of	these	destinations	allows	us	to	have	a	collection
of	reusable	components.	We	can	even	version	our	modules,	just	like
system	packages	or	programming	language	libraries.

As	we	are	deep	into	GitLab	already,	let's	create	yet	another	repository	and
call	it	packt-terraform-app-module.	As	always,	all	the	code	written	in	this

chapter	is	available	on	GitLab	at	https://gitlab.com/Fodoj/packt-terraform-a
pp-module.

Move	everything	inside	the	./modules/application/	folder	to	packt-terraform-
app-module	and	commit	it.	Then,	remove	the	modules	directory	from	the
MightyTrousers	project	completely	and	specify	the	path	to	the	remote
module	as	follows:

module	"mighty_trousers"	{	

		source	=	"git::https://gitlab.com/Fodoj/packt-terraform-app-module.git"	

		vpc_id	=	"${data.terraform_remote_state.vpc.vpc_id}"	

			#	...	

}	

Replace	the	URL	with	your	git	repository	(or	just	use	the	one	previously
specified,	if	you	were	too	lazy	to	complete	the	exercise).	Finally,	run	the
terraform	get	command	to	pull	the	module.	It	will	be	stored	inside	the
.terraform/	directory:	now	it	makes	more	sense	than	symlink	to	a	local
directory.

It's	a	bad	idea	to	reference	master	branch	of	a	remote	module	because	it
can	change	at	any	moment.	Let's	tag	the	module	with	version	0.1	and
reference	it	inside	template.tf:

#	from	packt-terraform-app-module	

$>	git	tag	v0.1	

$>	git	push	origin	master	:tags	

Reference	the	earlier	module	in	template.tf:

module	"mighty_trousers"	{	

		source	=	"git::https://gitlab.com/Fodoj/packt-terraform-app-module.git?ref=v0.1"	

		vpc_id	=	"${data.terraform_remote_state.vpc.vpc_id}"	

			#	...	

}	

https://gitlab.com/Fodoj/packt-terraform-app-module

Our	packt-terraform	repository,	dedicated	to	the	MightyTrousers
application,	is	so	tiny	now.	The	main	template	is	just	60	lines	long,	and	it
simply	pulls	some	data	from	remote	state	files	and	configures	a	module,
also	stored	remotely.	If	we	want	to	add	a	new	application,	we	can	create	a
similar	repository	without	almost	any	effort.	Developers	can	work	with
application	repository.	Owners	of	modules	collection	can	focus	on	their
modules	repositories.	Administrators	are	free	to	change	the	global	VPC
and	IAM	configuration.	This	is	an	infrastructure	collaboration	dream	come
true.

Yet	we	still	have	one	problem	left	to	solve:	locking	of	state	file.

Locking	state	files	with
Terragrunt
Let's	say	you	have	your	application	template	and	a	team	of	five	people
working	on	it.	One	Monday	morning	you	decide	to	change	a	minor	thing,
such	as	the	security	group,	and	at	the	same	time	your	colleague,	sitting	in	a
room	next	to	you,	decides	to	change	a	disk	size	for	instances.	Being
confident	that	you	are	the	only	ones	running	the	terraform	apply	command
at	this	moment,	you	both	do	terraform	apply,	push	changed	state	file	to	the
git	repository	(or	to	remote	storage	like	S3),	and	end	up	in	a	total	disaster.

If	your	state	file	is	stored	in	git,	then	you	will	meet	the	merge	conflict:	not
too	bad,	you	can	try	to	resolve	it	by	hand,	and	you	will	still	be	able	to	see
who	changed	what.	If	you	use	a	remote	backend	for	the	state	file,	then
things	are	going	south.	Which	state	file	is	now	inside	the	remote	storage?
And	where	do	the	changes	of	another	Terraform	run	go?

It	is	dangerous	to	work	on	the	same	state	file	in	a	team,	because	there	is	no
locking	out	of	the	box.	You	could	pay	for	Atlas,	which	gives	you	this
feature,	but	what	if	you	don't	want	to	pay	for	Atlas,	for	many	obvious
reasons?	Well,	there	are	a	few	(if	not	many)	solutions	to	this	problem.

The	first	one	that	we	will	take	a	look	at	is	Terragrunt.	Terragrunt	is	a	thin
wrapper	for	Terraform	that	supports	locking	of	the	Terraform	state	and
enforces	best	practices.	The	GitHub	page	of	this	is	yet	another	open	source
CLI	wrapper	for	Terraform.	It	solves	two	problems,	outlined	as	the
following:

Provides	a	locking	mechanism

Forces	you	to	use	remote	state,	always

Locking	in	Terragrunt	is	provided	via	DynamoDB:	a	NoSQL	database
service	from	AWS.	Let's	go	ahead	and	install	it.

Grab	the	latest	version	from	GitHub	Releases	at	https://gith
ub.com/gruntwork-io/terragrunt/releases.Make	it	available	in	yo
ur	$PATH.	On	Mac,	you	can	install	Terragrunt	by	running	brew	in

stall	terragrunt

	

To	start	using	it,	create	a	.terragrunt	file	in	the	packt-terraform	repository.
This	file	uses	the	already	familiar	HCL	language	(the	same	language
Terraform	templates	are	written	in).	It	is	needed	to	configure	remote
storage	for	your	state	file	and	locking.	As	we	already	have	remote	storage
configured,	carefully	use	the	existing	configuration	inside	this	new	file:

lock	=	{	

		backend	=	"dynamodb"	

		config	{	

				state_file_id	=	"mighty_trousers"	

		}	

}	

remote_state	=	{	

		backend	=	"s3"	

		config	{	

				bucket	=	"packt-terraform"	

				key	=	"mighty_trousers/terraform.tfstate"	

				region	=	"eu-central-1"	

		}	

}	

Instead	of	using	the	terraform	commands,	you	should	use	terragrunt	now:
terragrunt	get/plan/apply/destroy/output.	You	will	note	this	fact	when	you
run	apply	for	the	first	time:

[terragrunt]	2016/12/01	09:52:58	Reading	Terragrunt	config	file	at	.terragrunt

[terragrunt]	2016/12/01	09:52:58	Remote	state	is	already	configured	for	backend	s3

[terragrunt]	2016/12/01	09:52:58	Attempting	to	acquire	lock	for	state	file	

mighty_trousers	in	DynamoDB

[terragrunt]	2016/12/01	09:52:58	Lock	table	terragrunt_locks	does	not	exist	in	DynamoDB.	

https://github.com/gruntwork-io/terragrunt/releases
https://github.com/gruntwork-io/terragrunt/releases

Will	need	to	create	it	just	this	first	time.

[terragrunt]	2016/12/01	09:52:58	Creating	table	terragrunt_locks	in	DynamoDB

[terragrunt]	2016/12/01	09:52:59	Table	terragrunt_locks	is	not	yet	in	active	state.	

Will	check	again	after	10s.

[terragrunt]	2016/12/01	09:53:09	Success!	Table	terragrunt_locks	is	now	in	active	state.

[terragrunt]	2016/12/01	09:53:09	Attempting	to	create	lock	item	for	state	file	mighty_trousers	

in	DynamoDB	table	terragrunt_locks

[terragrunt]	2016/12/01	09:53:10	Lock	acquired!

	

Let's	make	an	experiment	and	run	the	terragrunt	apply	command	twice.
Open	a	new	tab	in	your	terminal,	start	the	terragrunt	run	command	in	the
first	one,	then	switch	to	the	second	one,	and	start	it	again.	You	won't	be
able	to	proceed	because	the	first	tab	already	acquired	a	lock	for	the	state
file:

[terragrunt]	2016/12/01	09:54:37	Reading	Terragrunt	config	file	at	.terragrunt

[terragrunt]	2016/12/01	09:54:37	Remote	state	is	already	configured	for	backend	s3

[terragrunt]	2016/12/01	09:54:37	Attempting	to	acquire	lock	for	state	file	

mighty_trousers	in	DynamoDB

[terragrunt]	2016/12/01	09:54:38	Attempting	to	create	lock	item	for	state	file	

mighty_trousers	in	DynamoDB	table	terragrunt_locks

[terragrunt]	2016/12/01	09:54:39	Someone	already	has	a	lock	on	state	file	

mighty_trousers!	AIDAJP2R36AIB5ZY25DEQ@192.168.178.21	acquired	the	lock	on	

2016-12-01	08:53:10.237944107	+0000	UTC.

[terragrunt]	2016/12/01	09:54:39	Will	try	to	acquire	lock	again	in	10s.

This	is	a	real	game-changer	for	your	Terraform	operations:	no	more
conflicts	much	more	predictability!	The	locking	in	Terragrunt	works	by
creating	(if	one	does	not	exist)	a	new	table	in	DynamoDB,	as	well	as	a
new	item	in	this	table	with	the	name	of	the	state_file_id	option	value.	This
item	will	contain	useful	metadata	about	the	lock,	such	as	who	created	it
and	when.	After	the	Terraform	run	is	finished,	the	item	is	removed	from
the	table,	making	a	state	file	available	for	modifications	again.

The	process	of	locking	is	not	really	complicated.	Terragrunt	supports
DynamoDB	as	a	backend,	but	you	could	implement	a	similar	solution
yourself.	For	example,	you	could	create	a	Makefile	that	wraps	around
Terraform	the	same	way	Terragrunt	does	and	implement	locking	with	a
simple	file	on	S3	or	in	some	other	way,	as	per	convenience	for	your
organization	name.	You	will	actually	need	to	do	it	if	you	do	not	rely	on
AWS	as	your	infrastructure	provider.

With	Terragrunt,	you	can	also	acquire	the	lock	manually,	for	a	longer
period	of	time:

$>	terragrunt	acquire-lock

[terragrunt]	2016/12/01	11:16:46	Reading	Terragrunt	config	file	at	.terragrunt

Are	you	sure	you	want	to	acquire	a	long-term	lock?	(y/n)	y

[terragrunt]	2016/12/01	11:16:49	Acquiring	long-term	lock.	To	release	the	lock,	

use	the	release-lock	command.

[terragrunt]	2016/12/01	11:16:49	Attempting	to	acquire	lock	for	state	file	

mighty_trousers	in	DynamoDB

[terragrunt]	2016/12/01	11:16:50	Attempting	to	create	lock	item	for	state	file	

mighty_trousers	in	DynamoDB	table	terragrunt_locks

[terragrunt]	2016/12/01	11:16:51	Lock	acquired!

After	you	are	done	Terraforming,	just	run	terragrunt	release-lock.

Terragrunt	is	a	lifesaver	for	any	Terraform	user;	with	a	few	simple

features,	it	makes	collaboration	on	Terraform-related	work	much	more
robust,	predictable	and	production-ready.	The	company	behind	Terragrunt
heavily	relies	on	Terraform	for	its	operations,	so	one	can	expect	this	tool
to	be	further	supported	and	improved	with	new	features.

As	mentioned	though,	the	locking	features	of	Terragrunt	work	only	if	you
are	ready	to	use	AWS	DynamoDB,	which	might	not	always	be	the	case.
You	could	implement	locking	yourself	and	hope	that	it	works	well,	and
your	team	members	might	follow	all	procedures	as	expected.	But	there	is
still	the	possibility	of	a	human	mistake.	We	can	keep	it	at	a	minimum	by
completely	removing	the	right	to	run	terraform	apply	command	from	the
operators'	and	developers'	machines.	How	would	it	run,	then?	CI,	of
course.

Moving	infrastructure	updates
to	the	CI	pipeline
Remember	how	we	started	this	book	with	a	discussion	of	infrastructure	as
code	concepts?	Well,	if	we	want	to	go	further	treating	infrastructure	as	a
real	code,	then	we	could	(and	even	should)	apply	all	the	same	best
practices	currently	existing	in	software	development,	and	Continuous
Integration	is	a	big	part	of	it.	The	idea	behind	CI	(in	case	you	missed	all
the	buzz	about	it	a	few	years	ago)	is	to	be	able	to	test,	build,	and	deploy
your	code	regularly	and	automatically.	The	way	it	works	is	by	using
special	software	that	takes	care	of	all	the	tasks	of	making	your	software
ready	for	production.	You	only	need	to	define	which	tasks	exactly	are	part
of	your	CI	and	how	to	execute	them.

Do	you	remember	that	we	chose	GitLab	over	GitHub	due	to	some	features
that	GitHub	lacks?	The	most	important	feature	that	GitLab	has	completely
integrated	into	all	development	workflows	and	that	GitHub	doesn't	have	at
all,	is	GitLab	CI.	Yes,	you	can	use	Travis	CI	or	Jenkins	or	anything	else
with	GitHub,	but	that	will	mean	that	you	need	to	support	an	extra	tool.
With	GitLab,	you	have	CI	in	place	from	day	one,	ready	to	be	used	for	any
of	your	repositories,	and	for	free.	GitLab	CI	has	fewer	features	than,	let's
say,	Jenkins,	and	as	of	now	it	can	be	tricky	to	implement	complex
pipelines	with	it,	but	for	simpler	use	cases,	especially	where	there	are	few
dependencies	between	different	components,	it's	perfect.

CI	builds	in	GitLab	run	inside	GitLab	Runners:	these	are	any	machines
that	you've	configured	to	be	able	to	run	builds.	GitLab	(https://about.gitla
b.com/),	a	free	hosted	version	of	GitLab,	provides	these	runners	for	free
(via	a	partnership	with	DigitalOcean,	a	VPS	hosting	company)	and	we	are
going	to	use	them.	Let's	take	a	look	at	this	picture:

https://about.gitlab.com/

Our	goal	for	now	is	to	only	run	the	terraform	plan	command	in	CI	on	every
change	and	makes	the	apply	step	manual.	If	we	were	to	run	apply
automatically	as	well--for	example,	on	each	merge	to	the	master	branch--
then	we	would	also	achieve	the	continuous	delivery	setup.	Being	able	to
do	it	for	infrastructure	depends	a	lot	on	what	kind	of	updates	you	perform
and	how	much	you	trust	the	tool	to	do	it.	What	if	five	uull	requests	(or
merge	requests)	merged	and	applied	one	after	another.	Would	this
completely	break	your	whole	AWS	setup?	Production	deployments	of
changes	to	Terraform	templates	are	better	being	performed	manually,	but
nothing	stops	you	from	doing	it	automatically	for	staging	environments.

Let's	get	back	to	the	packt-terraform-book	repository,	because	that's	the	one
that	actually	has	the	deployed	code	in	it.	In	order	to	enable	GitLab	CI,	we
simply	need	to	add	the	.gitlab-ci.yml	file	to	the	repository.	This	file	will
specify	all	the	builds	stages	and	steps	that	we	need	to	take.	Create	this	file
with	the	following	content:

image:	alpine:latest	

test:	

		script:	

				-	echo	"Terraform!"	

Then	push	it	to	GitLab.	If	you	open	the	GitLab	web	interface	and	click	on
the	Pipelines	tab,	you	will	notice	that	there	is	one	pipeline	running	with
one	stage	test	in	it.	This	step	doesn't	do	anything	useful	just	yet,	but	we
have	our	CI	up	and	running	just	by	adding	a	single	file!

Pay	attention	to	the	first	line	that	specifies	the	image	key:	by	default,

GitLab	runs	all	the	builds	inside	Docker	containers,	and	in	this	case,	we
told	it	to	run	the	Alpine	Linux	container.	Alpine	is	a	very	lightweight
Linux	distribution	with	zero	overhead.	It's	very	fast	to	start	and	use,	but	it
also	requires	you	to	preinstall	more	tools	by	yourself.

Luckily,	the	tools	we	are	going	to	use	are	written	in	Go,	which	means	that
they	are	normally	distributed	as	precompiled	binaries.	Still,	to	download
and	unpack	these	tools,	we	need	at	least	curl	and	unzip	programs.	And	to
download	the	remote	modules,	we	need	Git	and	SSH.	Let's	install	these
tools	and	then	install	Terraform	and	Terragrunt:

before_script:	

		-	apk	add	--update	curl	unzip	git	openssh	

		-	curl	-O	https://releases.hashicorp.com/terraform/0.7.13/terraform_0.7.13_linux_amd64.zip	

		-	unzip	terraform_0.7.13_linux_amd64.zip	

		-	curl	-LO	https://github.com/gruntwork-io/terragrunt/releases/download/v0.6.2/terragrunt_linux_386	

		-	mv	terragrunt_linux_386	terragrunt	

		-	chmod	+x	terragrunt	

test:	

		script:	

				-	./terraform	-v	

				-	./terragrunt	-v	

It	takes	roughly	50	seconds	each	time	we	run	a	build	just	to	download	and
install	the	required	packages.	Any	CI	tool	allows	us	to	use	some	kind	of
cache	for	these	operations.	GitLab	CI	is	not	an	exception	here,	and	you
can	play	around	with	its	cache	features	as	an	exercise.	For	this	example,
though,	we	will	leave	it	as	it	is	and	proceed	to	actually	using	our	template.

Make	sure	that	the	.terragrunt	file	looks	like	this	(except	for	the	S3	bucket
name;	this	is	going	to	be	different	if	you	run	it	yourself):

lock	=	{	

		backend	=	"dynamodb"	

		config	{	

				state_file_id	=	"mighty_trousers"	

		}	

}	

remote_state	=	{	

		backend	=	"s3"	

		config	{	

				bucket	=	"packt-terraform"	

				key	=	"mighty_trousers/terraform.tfstate"	

				region	=	"eu-central-1"	

		}	

}	

If	we	try	to	run	the	terragrunt	plan	command	in	GitLab	CI,	it	won't	work.
That's	because	we	did	not	configure	the	GitLab	CI	to	be	able	to	talk	to
AWS	APIs.	If	we	were	running	our	own	GitLab	CI	Runners	on	top	of
EC2,	then	we	would	use	IAM	roles	to	provide	access	to	these	APIs.	But	as
we	are	using	free	runners	on	top	of	the	Digital	Ocean,	we	have	to	provide
access	keys.	We	should	not	use	our	personal	keys:	let's	create	a	separate
service	user	in	AWS	IAM	and	generate	keys	for	it.

Open	the	users	tab	in	the	IAM	interface	and	click	on	Add	another	user.
Then,	fill	in	the	name	of	the	user	and	make	sure	that	you	tick	the
Programmatic	access	checkbox:

Give	this	user	full	permission	to	EC2,	VPC,	DynamoDB	(for	Terragrunt
lock),	S3	(for	remote	storage	access),	and	IAM.	You	will	be	right	if	you
say	that	these	are	too	broad	a	set	of	permissions.	In	the	real	world,	you
should	narrow	them	down	to	only	a	small	set	of	essential	policies.

After	creating	a	user,	AWS	will	show	you	secret	and	access	keys	for	it.
We	need	to	use	them	inside	GitLab.	Go	to	the	Variables	section	of	settings
page	and	define	two	new	variables,	AWS_ACCESS_KEY_ID	and
AWS_SECRET_ACCESS_KEY,	with	the	values	that	AWS	just	gave	to
you:

These	variables	will	be	available	as	environment	variables	inside	GitLab
CI	builds.	As	Terraform	picks	AWS	variables	for	access	and	secret	keys
automatically,	we	can	hope	that	GitLab	CI	is	now	ready	to	execute
Terraform	runs.	Modify	the	test	stage	steps	in	.gitlab-ci.yml	to	look	like

this:

test:	

		script:	

				-	export	PATH=$PATH:$(pwd)	

				-	./terragrunt	plan	

Push	this	change	to	GitLab,	head	to	the	GitLab	Pipelines	view	and	observe
what	happens	next.

If	you	have	issues	with	access	to	AWS,	make	sure	that
variables	on	GitLab	do	not	have	any	empty	spaces	before	or
after	their	values.	GitLab	doesn't	strip	them	for	you.

If	everything	has	been	set	up	correctly,	then	you	will	get	a	plan	of	what
Terraform	would	do:

This	is	pretty	awesome,	if	you	think	about	it	for	a	moment.	All	of	your
infrastructure	code	is	stored	and	versioned	securely	in	the	git	repository.
All	your	changes	are	planned	and	presented	in	a	nice	UI,	right	inside	the
same	tool	you	use	for	code	storage.	What	is	missing	is	an	Apply	state.
Let's	add	it	to	.gitlab-ci.yml	and	mark	it	as	manual.	We	should	refactor
this	file	a	bit	as	well:

plan:	

		stage:	"test"	

		script:	

				-	export	PATH=$PATH:$(pwd)	

				-	./terragrunt	plan	

	

apply:	

		stage:	"deploy"	

		when:	"manual"	

		only:	["master"]	

		script:	

				-	export	PATH=$PATH:$(pwd)	

				-	./terragrunt	apply	

After	you	push	it,	GitLab	will	start	the	pipeline,	and	it	will	also	present
each	stage	in	a	nice	graph:

After	carefully	examining	the	plan	(or	test)	stage,	you	can	trigger	the
apply	manually	and	watch	GitLab	CI	doing	it.	The	state	file	will	be	stored
in	S3,	still	available	to	you	if	you	have	to	do	Terraform	tasks	locally.	By
using	Terragrunt,	you	ensure	that	no	one	else	is	running	the	terraform	apply
command	at	this	moment;	the	state	is	locked	via	Terragrunt	and
DynamoDB.	We	also	marked	the	apply	stage	to	be	available	only	on	the
master	branch,	so	it's	impossible	to	trigger	it	for	a	pull	request.

As	a	result,	once	a	colleague	of	yours	makes	a	new	pull	request,	the	plan
stage	will	be	executed.	A	person	with	the	privilege	to	merge	this	pull
request	can	review	both	changes	to	the	template	and	the	result	of	the	plan
stage,	and	if	everything	looks	fine,	merge	it	with	master,	watch	the	plan

stage	again,	and	then	manually	trigger	apply.	It's	a	Continuous	Integration,
only	for	your	infrastructure.

Trigger	the	apply	stage,	wait	for	it	to	complete,	and	then	trigger	the	whole
pipeline	manually	from	the	GitLab	interface:

The	plan	stage	should	report	that	there	is	nothing	to	change	now.	Destroy
it	from	your	local	machine	with	the	terragrunt	destroy	command	to	avoid
losing	money	on	the	stack	just	created.

The	GitLab	CI	and	Terraform	combination	is	just	one	of	many	possible
ones,	depending	on	your	choice	of	source	code	control	and	CI/CD	tool.
You	can	achieve	the	same	with	many	other	tools,	and	you	will	get	the
same,	pretty	nice	result:	an	ability	to	treat	your	infrastructure	as	a
complete	deliverable	software	component,	versioned	with	SCM	and	built
and	deployed	with	CI.	Managing	production	infrastructure	this	way	is	only
one	(though	already	highly	beneficial)	application	of	this	workflow.	We
could	come	up	with	many	other	ones.

For	example,	we	could	create	review	apps	with	Terraform.	Review	apps
are	something	you	create	for	each	pull	request	to	be	able	to	do	QA	on
every	feature:	sometimes	expensive,	but	always	nice	thing	to	have.
Terraform	could	take	care	of	creating	complete	production-like
infrastructure	for	every	review	application,	and	then	another	pipeline	step
could	deploy	the	actual	code	to	this	infrastructure,	and	then	sending	a
notification	to	the	QA	team	to	verify	that	the	feature	was	implemented	as
expected.	And	after	the	review	is	done?	Use	the	terraform	destroy
command	to	destroy	it!

Initially,	review	apps	were	promoted	by	Heroku,	but	the
whole	idea	is	so	nice	that	it	doesn't	have	to	depend	on
Heroku.	Tools	such	as	Terraform	make	it	trivial	to
implement	it	yourself	in	a	few	short	steps.

You	could	also	build	a	complete	self-service	tool	for	your	organization
that	allows	anyone	to	create	complete	environments	with	a	few	clicks,
removes	all	the	struggle	of	managing	state	file,	thinks	about	Terraform
templates,	and	so	on.	During	the	creation	of	a	tool	like	this	at	one	client	of
this	book	author,	the	final	service	was	proudly	named	TerrorFarm,	as	a
combination	of	farm	of	servers	and	terraform,	of	course	(and	a	bit	of	a
terror,	due	to	unpredictable	nature	of	some	Terraform	applications).

Integration	testing	of	Terraform
modules
In	one	of	the	previous	chapters	on	making	various	tools	play	well	with
Terraform,	we	already	took	a	quick	look	at	running	infrastructure	tests.
Back	then	we	used	Inspec	to	run	a	test	against	the	single	EC2	instance.	A
few	chapters	forward,	and	now	we	have	much	more	complex	Terraform
setup	on	our	hands;	one	that	is	split	across	four	repositories.

If	we	were	to	consider	ourselves	old-fashioned	traditional	system
administrators,	we	would	be	quite	happy	with	what	we	have	achieved	by
now.	But	a	good	software	developer	(and	if	we	are	doing	infrastructure	as
code,	then	we	are	already	software	developers,	regardless	of	our	previous
experience)	would	never	leave	any	code	without	proper	tests.	And	what
we	wrote	in	the	past	is	nothing	like	a	proper	test.

But	what	should	we	test?	We	must	not	run	tests	against	the	production
environment	(the	one	we	just	configured	GitLab	CI	for),	and	it	is
meaningless	to	test	VPC	and	IAM	repositories	in	isolation.	So	the	only
good	(really	good)	candidate	for	integration	tests	is	the	application	module
we	wrote	earlier.	How	about	we	create	an	integration	test,	located	in	the
application	module	repository,	that	would	spin	up	an	instance	of	this
module,	connect	it	to	existing	VPC	and	IAM	configuration,	and	verify	that
it	really	does	start	a	web	application	(the	base	Apache	web	server,	in	this
case)?

Perhaps	the	most	popular	tool	to	run	infrastructure	tests	these	days	is
TestKitchen.	The	idea	behind	TestKitchen	is	to	make	running	these	kind
of	tests	very	simple:	you	only	need	to	write	a	single	YAML	configuration	file
that	defines	how	to	create	machines	(using	driver)	and	how	to	test	them
(using	verifier).	After	configuring,	you	can	create,	test,	and	destroy
servers	with	a	single	kitchen	test	command.	Initially,	it	was	built	to	work

with	Chef,	but	now	it	has	many	instance	of	driver	and	verifier,	distributed
as	Ruby	gems.	And	you	guessed	right;	there	is	a	kitchen-terraform	plugin.
Let's	learn	how	to	use	it.

Navigate	to	the	packt-terraform-app-module	repository	and	create	Gemfile
over	there	with	these	contents:

source	'https://rubygems.org/'	

ruby	'2.3.1'	

gem	'test-kitchen'	

gem	'kitchen-terraform'	

	

You	need	Ruby,	rubygems	and	bundler	gem	installed	before	you	proceed.
Once	you	have	them,	simply	run	the	bundle	install	command	to	install
test-kitchen	and	its	Terraform	plugin.	kitchen-terraform	handles	all	the
terraform	get,	terraform	apply,	and	terraform	destroy	for	us;	we	only	need	to
create	a	template	that	it	will	handle.	Create	a	test	directory	inside	a
module	repository	and	add	.kitchen.yml	inside	it.	Be	careful:	it's	important
not	to	add	it	to	the	root	folder	of	the	module	because,	in	that	case,
TestKitchen	will	try	to	apply	the	module	template	itself,	and	not	a
template	that	uses	module	inside	it.

First	of	all,	we	need	to	define	a	driver	inside	this	file:

driver:	

		name:	terraform	

It's	Terraform.	This	means	that	kitchen-terraform	will	be	used.	Next	goes
the	provisioner.	Normally,	driver	is	responsible	for	creating	machines
(Docker,	EC2,	and	others)	and	the	provisioner	for	how	to	provision	them
(Chef,	Puppet,	and	Ansible).	In	case	of	Terraform,	we	are	interested	only
in	creating,	and	provisioning	is	configured	somewhere	inside	the

Terraform	templates.	Because	of	this,	the	only	provisioner	we	configure	is
Terraform	itself:

provisioner:	

		name:	terraform	

Normally,	if	you	test	a	server	configuration,	you	would	want	to	test	it	for
multiple	platforms,	such	as	Red	Hat	Linux,	Debian,	and	so	on.	Again,	it
makes	little	sense	in	the	context	of	Terraform.	Still,	TestKitchen	requires
us	to	define	a	platform,	so	let's	make	it	happy:

platforms:	

		-	name:	centos	

The	transport	section	is	responsible	for	connecting	to	the	machines	created
by	TestKitchen.	Generate	a	dummy	key-pair	inside	the	test	folder	and
configure	transport	as	follows:

transport:	

		name:	ssh	

		ssh_key:	./test/id_rsa	

suites	is	a	set	of	tests	to	run.	We	will	define	just	one:

suites:	

		-	name:	default	

Finally,	verifier	is	what	TestKitchen	will	run	to	make	sure	that	the	server
(or	infrastructure,	in	our	case)	was	created	and	configured	correctly:

verifier:	

		name:	shell	

		command:	./test.sh	

		sleep:	180	

There	are	multiple	verifiers	available,	including	one	already	familiar	to	us,
Inspec.	Lots	of	them	are	focused	on	testing	one	particular	server.	But
when	we	talk	about	the	whole	infrastructure,	we	can't	test	just	one	server:
we	need	to	somehow	verify	all	of	it.	It	is	especially	true	for	our	application
module	because	it	doesn't	create	the	server	directly:	instead	it	creates	an
Auto-scaling	groups	and	exposes	only	an	endpoint	that	all	the	servers	hide
behind.	That's	why	we	are	using	shell	verifier	which	invokes	a	script	on
the	machine	you	run	tests	from:	inside	this	script,	we	have	full	flexibility
of	what	to	test.	If	the	script	returns	1,	the	test	has	failed;	if	0,	it	succeeded.
In	the	case	of	an	application	module	that	only	creates	a	bunch	of	statelesss
web	servers	running	Apache	in	default	configuration,	the	whole	test	can
consist	of	a	check	to	see	whether	the	ELB	endpoint	returns	a	standard
Apache	page	or	not:

				#!/bin/bash

				

				cd	.kitchen/kitchen-terraform/$KITCHEN_SUITE-$KITCHEN_PLATFORM

				

				hostname=$(terraform	output	app_endpoint)

				

				res=$(curl	$hostname	|	grep	"Testing	123"	|	wc	-c)

				

				if	[[$res	=	"0"]]

				then

						exit	1

				else

						exit	0

				fi

This	example	is	kept	intentionally	simple,	of	course.	It's	up	to	you	how
complex	you	make	this	test.	It	can	even,	for	example,	run	the	complete
Selenium-based	set	of	tests	for	a	complex	web	application.	It	all	depends
on	what	exactly	Terraform	creates.	Note	this	weird	line:

cd	.kitchen/kitchen-terraform/$KITCHEN_SUITE-$KITCHEN_PLATFORM

When	you	run	TestKitchen,	it	stores	the	Terraform	state	file	in	a	local
.kitchen/kitchen-terraform	directory,	divided	by	suites	and	platforms.	The
name	of	the	suite	and	a	platform	is	available	via	the	environment	variable
in	any	script	configured	for	shell	verifier.

The	only	thing	missing	now	is	an	actual	test	Terraform	template.	It's	not
much	different	from	what	we	used	in	a	production	repository	earlier,	except
that	behind	the	curtains	some	of	the	variables	were	removed.	As	an
exercise,	modify	the	module	itself	to	fit	the	following	template:

				#	...

				module	"test_app"	{

						source	=	"../"

						vpc_id	=	"${data.terraform_remote_state.vpc.vpc_id}"

						subnets	=	[

																	"${data.terraform_remote_state.vpc.public-subnet-1-id}",

																	"${data.terraform_remote_state.vpc.public-subnet-2-id}"

]

						name	=	"TestApp"

						keypair	=	"${aws_key_pair.terraform.key_name}"

						environment	=	"${var.environment}"

						extra_sgs	=	["${aws_security_group.default.id}"]

						instance_count	=	1

						iam_role	=	"${data.terraform_remote_state.iam.base-role-name}"

				}

				

				output	"app_endpoint"	{

						value	=	"${module.test_app.app_address}"

				}

It	still	uses	the	same	remote	state	files	for	IAM	and	VPC	configuration;	no
need	to	change	anything	there.	instance_count	was	changed	to	just	1	:	we
don't	want	our	tests	to	be	too	expensive.	To	run	these	tests,	we	only	need
to	run	the	bundle	exec	kitchen	test	command.	This	command	will	do	this:

1.	 Apply	the	Terraform	template	and	put	the	state	file	to	.kitchen.
2.	 Execute	the	test.sh	script.

3.	 Destroy	the	Terraform	environments.

For	a	small	template	that	we	have	will	take	roughly	three	minutes	to	create
all	of	the	infrastructure	and	then	another	few	minutes	for	Puppet	to	do	its
job:	hence	sleep:	180	option	for	verifier.	Clearly	you	want	to	run	these
tests	inside	a	Continuous	Integration	server	instead	of	doing	it	manually.

We	looked	at	shell	verifier,	but	kitchen-terraform	has	an	extra	verifier
built-in.	This	verifier	is	nothing	but	a	wrapper	around	Inspec,	and	it
expects	you	to	provide	a	set	of	IP	addresses	or	DNS	names	to	SSH	to.	For
shell	verifier,	we	wrote	that	we	don't	really	need	transport	section,	but	it
was	left	in	intentionally	as	the	first	step	for	you	to	try	terraform	verifier
out.

As	a	final,	more	difficult	exercise	for	you	to	verify	what	you've	learned
about	Terraform	and	all	its	related	tools,	do	the	following:

1.	 Create	a	new	Terraform	module	that	creates	two	servers:	App
server	and	DB	server.

2.	 Write	an	integration	test	with	kitchen-terraform	that	tests	both	of
these	servers.

3.	 Set	up	a	CI	pipeline	to	run	this	test	(pick	the	CI	tool	you	like
most).

4.	 Add	an	extra	stage	to	this	pipeline	to	deploy	a	production
environment	with	Terragrunt	and	S3	remote	storage.

If	you	can	do	this,	then	you've	mastered	Terraform	and	infrastructure	as
code.

Summary
It's	been	another	long	chapter	to	digest	and	there	has	been	a	ton	of	new
things	to	learn	and	try.	You	started	by	learning	Git	and	how	to	organize
work	though	Git	branches,	remote	repositories,	and	code	review.	You
learned	how	to	easily	store	secrets	in	a	setup	like	this	with	git-crypt.	After
this,	we	took	a	look	at	the	remote	storage	of	state	files	for	Terraform,	and
at	various	methods	to	split	the	Terraform	code	inside	the	organization.

As	part	of	this,	we	wrote	our	first	completely	remote	Terraform	module,
refactored	the	whole	IAM	and	VPC	management	away	from	the	main
repository,	and	connected	it	all	nicely	in	a	small,	and	clean	template.	To
avoid	conflicts	and	to	better	structure	the	infrastructure	work,	we	set	up
the	Terragrunt	utility	and	learned	how	to	use	it	too.

We	took	the	whole	infrastructure	as	code	idea	to	the	extreme	by
introducing	a	complete	Continuous	Integration	pipeline	for	the
infrastructure	(and	learned	a	bit	of	GitLab	CI).	As	a	final	battle,	we	even
created	a	real	integration	test	suite	for	the	Terraform	code.

There	is	not	much	else	to	learn	about	the	use	of	Terraform	at	this	point.	In
the	next	chapter,	we	will	summarize	all	you	have	learned	about	Terraform
in	this	book	and	reflect	a	bit	on	the	future	of	this	tool.

Future	of	Terraform
You've	learned	Terraform!	No,	seriously,	you	have.	You	might	(we	hope)
still	be	busy	doing	the	final	big	exercise	from	the	end	of	the	previous
chapter.	That's	alright	--	it's	not	a	simple	one	and	it	takes	time.

We	have	finished	covering	everything	that	is	there	to	learn	about	this
fancy	new	(relatively	new)	HashiCorp	tool.	In	this	chapter,	you	won't	see
many	code	samples,	diagrams,	or	logs.	Instead,	we	are	going	to	recap	what
you've	learned,	talk	about	some	pros	and	cons	of	introducing	Terraform	to
your	organization,	and	speculate	about	the	future	of	this	utility.	Don't	skip
this	chapter,	especially	the	recap	sections!	It	will	have	a	lot	of	useful	tips,
as	well	as	references	to	books	and	articles	that	will	help	you	to	dive	deeper
into	each	particular	topic	related	to	Terraform	usage.	These	were	not
included	in	the	chapters	themselves	in	order	to	focus	on	learning
Terraform	and	not	to	spread	attention	between	dozens	of	things.

Infrastructure	as	code	and
Terraform	replacements
We	just	went	through	six	chapters	of	intense	coding.	It	is	easy	to	forget
what	it	was	all	about	a	hundred	pages	ago,	so	let's	quickly	summarize	the
journey	we	are	almost	through	with.

Chapter	1,	Infrastructure	Automation,	was	not	entirely	about	Terraform	--
you	learned	a	few	general	principles	of	modern	infrastructure	automation
and,	more	importantly,	you	got	to	learn	what	Infrastructure	as	Code
(IaC)	is.	If	you	want	to	be	successful	in	doing	modern	operations,
understanding	IaC	in	depth	is	a	must.	This	book	only	covers	one	particular
tool,	so	you	need	to	do	some	extra	reading	to	really	master	the	ideas
behind	IaC.	Perhaps	the	most	comprehensive	work	on	this	topic	is	a	book
titled	Infrastructure	as	Code:	Managing	Servers	in	The	Cloud	by	Kief
Morris.

In	addition,	check	out	Infrastructure	as	Code	(IAC)	Cookbook	by
Stephane	Jourdan	and	Pierre	Pomes,	which	has	many	practical	examples
of	different	IaC	tools,	including	Terraform.

That	very	first	chapter	also	listed	some	requirements	to	a	tool	such	as
Terraform.	Terraform	is	not	the	only	tool	of	this	kind	though.	It	is
important	to	know	alternatives	and	to	consider	each	of	them	for	your
particular	use	case.	Here	is	a	list	of	the	most	important	technologies	in	this
area;	investigate	each	of	them	at	least	a	bit:

CloudFormation,	for	AWS	environments

Heat,	for	OpenStack	environments

Chef	provisioning,	for	Chef-heavy	environments

Various	Puppet	modules,	if	you	rely	on	Puppet	a	lot	(look	for	the
puppetlabs-aws	module	as	a	starting	point)

SparkleFormation,	the	new	tool	that	covers	all	major	cloud	providers
and	builds	on	top	of	native	cloud	templating	services	such	as
CloudFormation

Learning	AWS	and	compiling
Terraform
Chapter	2,	Deploying	First	Server,	was	not	only	about	installing	Terraform,
but	it	also	taught	a	bit	about	AWS	basics.	If	you	want	to	use	Terraform
with	AWS	only,	then	you	first	need	to	know	AWS,	of	course.	AWS	has
very	detailed	documentation	and	a	lot	of	examples	in	it	--	it's	the	best	place
to	start	learning	it.	There	are	also	probably	hundreds	of	books	about	it.	For
a	beginner,	something	like	Learning	AWS	by	Aurobindo	Sarkar	and	Amit
Shah	will	fit	best.

It's	easy	to	install	the	official	version	of	Terraform.	Sometimes,	though,
you	will	want	to	use	the	edge	version,	not	yet	released.	The	Terraform
README	has	a	good	explanation	of	how	to	compile	it:	https://github.com/
hashicorp/terraform#developing-terraform.	What	is	important	to	know	is	that
it	is	totally	fine	to	use	the	edge	version	of	Terraform.	Trust	me,	many	big
organizations	do	it,	simply	because	they	need	some	new	features	already
now,	and	they	can't	wait	an	extra	couple	of	months	till	the	official	release.
Compile	the	binary,	upload	it	to	an	internal	artifact	repository	(could	be
just	an	S3	bucket)	and	use	your	own.	Just	try	not	to	get	stuck	with	a	self-
compiled	version	for	too	long.

https://github.com/hashicorp/terraform#developing-terraform

Learning	Consul
In	Chapter	4,	Storing	and	Supplying	Configuration,	we	took	a	brief	look	at
Consul,	a	service	discovery	tool	from	HashiCorp.	We	did	not	use	it	much
because	it	deserves	its	own	book	itself.	Nevertheless,	Consul	still	should
be	seriously	considered	for	configuration	data	storage	for	Terraform.
There	are	many	examples	already	out	there	on	the	Internet	telling	how
Consul	works	in	production	environments.	As	usual,	start	with	the	official
documentation,	then	explore	whether	Consul	Template	can	improve	your
configuration	management	efforts	and,	finally,	Google	some	blog	posts
about	it,	such	as	the	excellent	coverage	from	Data	Dog:	Consul	at
DataDog	(https://engineering.datadoghq.com/consul-at-datadog/).

https://engineering.datadoghq.com/consul-at-datadog/

Provisioning	and	configuration
management
In	Chapter	5,	Connecting	with	Other	Tools,	you	learned	how	to	connect
Terraform	with	various	existing	infrastructure	tools.	We've	spent	a	lot	of
time	on	configuration	management	systems	in	particular.	It	is	a	popular
thing	to	say	these	days	that	configuration	management	tools	are	not
required	any	longer	and	immutable	infrastructure,	containers,	or	whatever
is	the	best	and	only	practice.	Some	people	on	the	Internet	even	argue	that
you	can	replace	Chef	and	Puppet	only	with	Terraform.	Certainly,	that's	not
the	case.	Even	though	you	could	indeed	replace	Terraform	with	Chef	or
Puppet.

Terraform	covers	only	one	level	of	infrastructure	(as	discussed	in	Chapter
1,	Infrastructure	Automation),	and	it	does	it	reasonably	well.	For
everything	that	goes	inside	a	particular	piece	of	hardware	(or	virtual
hardware),	you	need	a	proper	configuration	management	tool,	regardless
of	whether	you	need	to	configure	an	EC2	instance,	a	big	bare	metal	server,
or	networking	hardware.	If	you	have	thousands	of	machines,	the	benefits
of	Chef	or	Puppet	become	even	more	clear.	So,	do	yourself	a	favor	and
learn	at	least	one	of	them,	then	combine	it	with	Terraform	to	achieve
infrastructure	excellence	at	every	layer	of	your	environments.

Immutable	infrastructure
Terraform	works	best	if	you	adapt	Immutable	Infrastructure	principles.	It
can	also	work	pretty	well	if	you	use	containers.	Read	Rebuilding	our
infrastructure	(https://segment.com/blog/rebuilding-our-infrastructure/)	from
Segment	about	how	they	used	Terraform	with	AWS	Elastic	Container
Service	and	Docker	for	the	new	version	of	their	infrastructure.	It	has	good
examples	in	the	Continuous	Integration	part	as	well.

The	ECS	plus	Terraform	approach	seems	to	gain	higher	adoption	in
general;	for	example,	check	out	a	presentation	about	more	or	less	the	same
idea	by	Yevgeniy	Brikman,	named	Infrastructure	as	Code:	Running
microservices	on	AWS	with	Docker,	Terraform,	and	ECS	(http://www.ybrik
man.com/writing/2016/03/31/infrastructure-as-code-microservices-aws-docker-t

erraform-ecs/).

Finally,	there	is	a	really	good	blog	post	by	Simone	Gotti	about	rolling
upgrades	with	Terraform.	Simone	also	published	all	the	code	to	perform
such	upgrades,	so	you	can	easily	use	it.	He	published	on	Immutable
Infrastructure	with	Terraform	and	rolling	upgrades	of	stateful	services	on
the	following	links:

https://sgotti.me/post/terraform-immutable-infrastructure-stateful-r

olling-upgrades/

https://github.com/sorintlab/terraform-immutable-upgrades

Be	careful	with	this	approach	though	--	all	the	containers,	stories	are	still
pretty	fresh	and	have	some	not-yet-solved	problems,	especially	in	the
operations	area.	Experiment	wisely.

https://segment.com/blog/rebuilding-our-infrastructure/
http://www.ybrikman.com/writing/2016/03/31/infrastructure-as-code-microservices-aws-docker-terraform-ecs/
https://sgotti.me/post/terraform-immutable-infrastructure-stateful-rolling-upgrades/
https://github.com/sorintlab/terraform-immutable-upgrades

Collaboration	and	CI/CD
As	of	Terraform	0.8,	it	has	a	built-in	support	for	Vault,	a	secrets
management	tool	from	HashiCorp.	It's	also	a	big	tool,	deserving	a	book	of
its	own.	And	it's	a	great	solution	in	order	to	solve	the	sensitive	data	storage
problem	for	Terraform.	Consider	learning	it	and	using	it.

In	Chapter	7,	Collaborative	Infrastructure,	we	did	not	go	too	deeply	into
the	details	of	the	modern	software	development	workflow.	The	basics	we
discussed	--	code	reviews,	working	through	pull	requests	--	are	just	this:
basics.	There	is	a	number	of	well-documented	workflows	that	cover	many
different	situations:

GitHub	Flow	(https://guides.github.com/introduction/flow/):	A	very
simplistic	and	popular	approach

GitLab	Flow	(https://docs.gitlab.com/ee/workflow/gitlab_flow.html):
A	slightly	different	process	from	the	GitLab	team

GitFlow	(http://nvie.com/posts/a-successful-git-branching-model/):
The	most	complex	and	an	extremely	popular	model	of
development	as	well

	

All	of	them	are	based	on	Git,	though	you	can	achieve	similar	results	with
other	distributed	VCS	as	well	(Mercurial,	for	example).	It	doesn't	matter
much	which	one	you	pick	in	the	end,	if	you	follow	your	chosen	one
exactly	the	way	it	is	described.	It	is	important	to	have	a	process	in	place
and,	as	long	as	you	have	one,	it's	already	better	than	Wild	West	or	force
pushing	to	master.

https://guides.github.com/introduction/flow/
https://docs.gitlab.com/ee/workflow/gitlab_flow.html
http://nvie.com/posts/a-successful-git-branching-model/

On	the	continuous	integration	side	of	things,	it	is	also	important	to	get	to
know	the	whole	concept	a	bit	better.	There	are	a	number	of	books	and
videos	from	ThoughtWorks,	who	also	popularized	the	whole	CI/CD	idea.
You	can	find	them	at	https://www.thoughtworks.com/continuous-integration.

If	you	don't	want	to	use	GitLab	CI,	you	don't	have	to	(of	course).	If	you
seek	the	same	functionality	and	ease	of	use	as	GitHub,	then	consider	one
of	the	many	SaaS	tools	out	there:	Travis	CI,	Circle	CI,	Drone,	and	others.
If	you	would	like	to	keep	your	infrastructure	pipelines	internal,	then	you
can	use	many	hosted	tools,	including	Jenkins,	which	has	great	pipelines
support:

https://www.thoughtworks.com/continuous-integration%20and%20a%20Terr

aform%20plugin

https://wiki.jenkins-ci.org/display/JENKINS/Terraform+Plugin

Again,	in	the	end,	it	does	not	really	matter	which	CI	tool	you	pick,	but	it	is
important	that	you	use	one	for	your	infrastructure	operations	as	well.

https://www.thoughtworks.com/continuous-integration
https://www.thoughtworks.com/continuous-integration%20and%20a%20Terraform%20plugin
https://wiki.jenkins-ci.org/display/JENKINS/Terraform+Plugin

The	many	tools	around
Terraform
Terraform	is	a	small	tool.	While	reading	this	book,	you've	hopefully	noted
how	many	different	other	tools	were	introduced	throughout.	They	are	as
follows:

Chef,	Ansible,	and	Puppet:	For	configuration	management

Inspec	and	Test	Kitchen:	For	testing

Terragrunt	and	Terraforming:	As	a	helper	for	Terraform
operations

Git,	git-crypt,	GitLab,	and	GitLab	CI:	For	teamwork

S3	and	Consul:	For	storage

Bash	and	Ruby:	For	scripting

You	have	to	learn	all	of	these	(or	their	analogues)	to	make	Terraform
production	ready.	The	focus	of	all	HashiCorp	tools	is	to	solve	one	problem
and	solve	it	well,	and	leave	everything	else	to	the	other	software	out	there.

It	can	be	beneficial	quite	often	-	you	are	not	forced	to	change	your	toolset;
you	can	pretty	much	naturally	integrate	Terraform	into	your	workflows
without	any	big	sacrifices.	Introducing	Terraform	to	an	existing
environment	is	easy.	Pick	one	particular	service	you	want	to	manage	with
it	and	write	your	first	template.	Decide	on	how	you	want	to	store	your
state	file	and	roll	out	upgrades	early.	Slowly	extend	the	area	managed	by
Terraform.	There	is	no	big	switch,	no	big	rewrite.

This	focus	on	one-tool-for-the-job	has	some	downsides	as	well,	especially
if	you	compare	them	with	competitors.	Let's	take	CloudFormation.	It	is	a
nightmare	to	write	huge	CloudFormation	templates.	For	every	small	thing,
you	have	to	add	another	10	lines	of	JSON	or	YAML.	It	is	a	true	example
of	a	bad	developer's	experience.	But	note	how	well	it	is	integrated	into	the
whole	AWS	ecosystem.	And	take	a	look	at	the	AWS	Service	Catalog:	just
using	CloudFormation,	you	can	offer	a	complete	user-friendly	interface
for	spawning	up,	updating,	and	destroying	entire	stacks,	without	ever
thinking	about	state	files,	building	this	UI	yourself,	and	so	on.

Just	using	CloudFormation	and	Service	Catalog,	you	could	build	the
whole	internal	app	store	for	infrastructure	environments	in	a	single	day.
It's	the	same	story	for	tools	such	as	ManageIQ,	which	gives	you	tool	not
only	templating,	but	the	complete	life	cycle	management,	full	overview	of
infrastructure,	an	API	to	all	entities,	and	a	self-service	portal	for	teams
inside	your	organization.	If	you	want	to	come	any	close	to	AWS	Service
Catalog	or	ManageIQ	with	Terraform;	you	have	to	do	all	the	work
yourself,	or	pay	for	Terraform	Enterprise,	of	course,	which	is	a	bit	of	a
better	alternative	than	just	the	Terraform	tool	itself.

So,	keep	in	mind	that	Terraform	is	not	a	full,	packaged	solution	for	your
infrastructure.	It's	a	tiny	useful	tool	that	must	be	wrapped	with	and
connected	to	many	other	tools	if	you	want	to	use	it	at	scale	and	in
production.

The	rapid	development	of
Terraform
Terraform	was	first	released	just	a	couple	of	years	ago,	and	it	still	hasn't
reached	a	major	version.	It	gains	more	and	more	in	popularity;	it	grows
like	crazy,	actually,	and	changes	rapidly.

The	book	you	are	reading	was	started	with	Terraform	0.7.7.	It	was
finished	and	updated	to	Terraform	0.8.	Even	between	minor	versions,
from	0.7.7	up	to	0.7.13,	there	were	many	small	changes	that	made	some
code	deprecated	and	some	code	broken.	However,	Terraform	0.8
introduced	conditionals,	as	well	introducing	proper	dependencies	on
modules,	which	made	big	chunks	of	code	simply	irrelevant	now.

With	an	ever-growing	number	of	contributors	and,	as	a	result,	the	size	of
the	code	base,	number	of	providers,	and	so	on,	it	can	be	hard	to	catch	up
with	the	latest	changes.	Keep	this	in	mind	when	starting	to	use	Terraform:
you	have	to	be	ready	to	deal	with	incompatible	changes,	with	new	features
appearing,	and	old	ones	going	away.	It	is	true	for	every	open	source
project.	It	is	especially	true	for	projects	that	haven't	reached	a	major
version	yet,	and	even	more	true	for	such	a	new	and	now	very	popular	tool
such	as	Terraform.	This	brings	us	to	the	next	point:	speculating	on	the
future	of	Terraform.

Closing	thoughts	on	the	future
of	Terraform
If	you	invest	some	effort	in	a	tool	and	introduce	it	into	a	large
organization,	then	you	should	consider	many	factors.	After	all,	you	don't
want	this	tool	to	be	suddenly	abandoned	by	all	developers	and	have	to	deal
with	the	expensive	process	of	replacing	it.	That	is	unlikely	to	happen	with
Terraform	though.	The	company	behind	it	seems	to	be	growing	strong,
adoption	of	its	tools	is	growing,	and	more	and	more	third-party	developers
contribute	their	code	to	Terraform,	Consul,	Packer,	and	others.	But	in
which	direction	will	it	grow	exactly?	We	can	only	guess,	of	course,	but
let's	try	anyway.

You	have	already	heard	about	Puppet	--	one	of	the	main	configuration
management	tools	out	there,	backed	by	a	seemingly	successful	company,
Puppet	Labs.	Unlike	Chef,	which	is	pure	Ruby,	Puppet	had	its	own	DSL
from	the	very	beginning,	which	makes	it	(arguably)	easier	for
administrators	to	learn	when	compared	with	learning	a	programming
language.	Today,	Puppet	language	is	a	bit	less	DSL	and	is	a	bit	more	of	a
full	language	though.	In	recent	releases,	it	even	got	a	native	support	for
things	like	loops.

Puppet	was	made	to	solve	the	problem	of	the	automated,	predictable
configuration	of	a	server.	Now,	because	of	the	Puppet	language	itself
being	powerful,	it	can	be	used	to	configure	higher	levels	of	infrastructure,
such	as	AWS	resources.	As	one	of	the	people	working	at	Puppet	said
(rephrasing):

You	don't	actually	care	what	to	manage	with	Puppet.

It	has	a	powerful	declarative	language,	with	many	features,	capable	of
performing	updates	and	being	idempotent.	Puppet	is	not	just	Puppet	itself

though.	It	has	Hiera	to	store	data,	has	MCollective	for	orchestration,	and
dozens	of	other	tools,	either	provided	by	Puppet	Labs	or	by	the
community	(see	The	Foreman	(https://www.theforeman.org/)	as	an	example)
that	make	it	even	better.

Why	so	many	details	on	Puppet?	Because	the	way	it	started	is	very	similar
to	Terraform,	and	the	way	it	developed	over	time	is	similar	as	well.
Terraform	has	a	special	DSL	instead	of	a	full	programming	language,	and
this	DSL	has	characteristics	very	similar	to	a	Puppet	language.	It	is	still	a
very	new	DSL,	which	gets	more	features	over	time.	Recently,	it	got	simple
conditional	support,	for	example.	Maybe	one	day	it	will	even	get	some
kind	of	loops	support	in	addition	to	the	existing	count	mechanism.

The	difference,	though,	is	that,	unlike	Puppet,	Terraform	started	with	the
top	level	of	cloud	resources	instead	of	an	in-server	configuration.	It
appeared	just	at	the	right	time:	when	the	whole	cloud	thing	exploded.
Every	major	technology	company	built	their	own	portfolio	of	cloud
services	and	the	need	for	a	tool	to	manage	it	properly	was	really	high,	and
it	is	even	more	true	today.	However,	in	addition	to	these	cloud	providers,
Terraform	gets	more	and	more	providers	focused	on	the	software	that	goes
inside	your	servers.	There	are,	for	example,	InfluxDB	and	MySQL
providers,	being	able	to	create	databases	on	a	server.	While	Puppet	went
from	a	lower	level	of	single	server	configuration	to	the	management	of
higher	layers,	Terraform	went	the	other	way	around	--	adding	more	and
more	lower-level	providers,	while	still	keeping	high-level	providers	up	to
date.

That's	where	uncertainty	about	the	direction	of	Terraform	comes	from.	Is
it	a	tool	like	CloudFormation,	or	is	it	a	new-born	configuration
management	tool?	Currently,	it	is	neither	of	these.	To	be	a	complete
infrastructure	provisioner,	Terraform	currently	lacks	many	important
features	that	are	available	only	in	Terraform	Enterprise.	To	be	a	complete
configuration	management	tool,	it	lacks	so	many	nice	features	and	the
maturity	of	titans	such	as	Chef	and	Puppet.

Maybe	it	will	eventually	focus	on	one	area,	dropping	the	major	support	for
the	other	one.	Perhaps	it	will	become	both	a	configuration	management

https://www.theforeman.org/

and	infrastructure	provisioning	tool:	the	first	tool	that	can	successfully
take	care	of	all	the	layers	of	your	infrastructure,	from	installing	packages
inside	an	EC2	instance	to	creating	Auto	Scaling	groups	for	these
instances.	But	it	will	be	a	really	long	ride	(years,	for	sure)	to	get	there.	It
will	need	to	have	features	both	from	infrastructure	provisioners	and
configuration	management	tools.

Terraform	proved	to	be	useful	for	putting	the	cloud	under	code	control,
being	the	best	tool	for	this	purpose.	It	also	has	some	fresh,	well-thought
ideas	that	it	is	built	upon.

As	the	release	of	version	1.0	is	getting	closer,	we	will	see	if	Terraform	will
become	a	major	player	in	the	configuration	management	or	the
infrastructure	provisioning	market,	or	whether	it	will	remain	a	small,
focused	tool	with	a	very	narrow,	specific	set	of	applications.

Summary
Now	you	know	Terraform!	It	would	be	a	shame	not	to	apply	this
knowledge.	Regardless	of	some	concepts	about	Terraform	outlined	earlier
in	this	chapter,	it's	still	a	great	new	tool	to	try	and	it's	extremely	useful	in
many	situations.	Don't	dive	into	it	headfirst;	pick	a	small	task,	write	a
template,	put	it	inside	a	Continuous	Integration	server,	and	extend	it.	IaC
is	exciting,	and	Terraform	makes	it	a	pleasure	to	use.

	Getting Started with Terraform Second Edition
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions
	Infrastructure Automation
	What is Infrastructure as Code and why is it needed?
	Declarative versus procedural tools for Infrastructure as Code
	Infrastructure as Code in the Cloud
	Requirements for infrastructure provisioner
	Supports a wide variety of services
	Idempotency
	Dependency resolution
	Robust integration with existing tools
	Platform agnosticism
	Smart update management
	Ease of extension
	Which tools exist for infrastructure provisioning?
	Scripting
	Configuration management
	CloudFormation/Heat
	Terraform
	A short overview of Terraform
	Journey ahead and how to read this book
	Summary
	Deploying First Server
	History of Terraform
	Preparing work environment
	The many Terraform providers
	Short introduction to AWS
	Using Elastic Compute Cloud
	Creating an instance through the Management Console
	Creating an instance with AWS CLI
	Configuring AWS provider
	Static credentials
	Environment variables
	Credentials file
	Creating an EC2 instance with Terraform
	Working with state
	Handling resource updates
	Destroying everything we've built
	Summary
	Resource Dependencies and Modules
	Creating an AWS Virtual Private Cloud
	Understanding dependency graph
	Playing with Terraform graphs
	Controlling dependencies with depends_on and ignore_changes
	Making sense of our template
	Removing duplication with modules
	Configuring modules
	Retrieving module data with outputs
	Using root module outputs
	Summary
	Storing and Supplying Configuration
	Understanding variables
	Using map variables
	Using list variables
	Supplying variables inline
	Using Terraform environment variables
	Using variable files
	Configuring data sources
	Providing configuration with template_file
	Providing data from anywhere with external_data
	Exploring Terraform configuration resources
	Taking a quick look at Consul
	Summary
	Connecting with Other Tools
	Returning data with outputs
	Testing servers with Inspec
	Provisioners
	Provisioning with local-exec and Ansible
	Provisioning with Chef
	Provisioning with remote-exec and Puppet
	Uploading files with a file provisioner
	Reprovisioning machines with null_resource
	Using third-party plugins
	Summary
	Scaling and Updating Infrastructure
	Counting servers
	Bringing in high availability
	Load balancing and simulating conditionals
	Immutable infrastructure
	Baking images with Packer
	Rolling out AMI upgrades with Terraform
	Performing blue-green deployments
	Refreshing infrastructure
	Importing resources
	Summary
	Collaborative Infrastructure
	Version control with Git 101
	Moving templates to Git
	Protecting secrets in a Git repository
	Storing state files remotely
	Connecting remote states together
	Storing modules remotely
	Locking state files with Terragrunt
	Moving infrastructure updates to the CI pipeline
	Integration testing of Terraform modules
	Summary
	Future of Terraform
	Infrastructure as code and Terraform replacements
	Learning AWS and compiling Terraform
	Learning Consul
	Provisioning and configuration management
	Immutable infrastructure
	Collaboration and CI/CD
	The many tools around Terraform
	The rapid development of Terraform
	Closing thoughts on the future of Terraform
	Summary

