

Chapter	1.	Why	Terraform

Software	isn’t	done	when	the	code	is	working	on	your	computer.	It’s	not
done	when	the	tests	pass.	And	it’s	not	done	when	someone	gives	you	a
“ship	it”	on	a	code	review.	Software	isn’t	done	until	you	deliver	it	to	the
user.

Software	delivery	consists	of	all	the	work	you	need	to	do	to	make	the	code
available	to	a	customer,	such	as	running	that	code	on	production	servers,
making	the	code	resilient	to	outages	and	traffic	spikes,	and	protecting	the
code	from	attackers.	Before	you	dive	into	the	details	of	Terraform,	it’s
worth	taking	a	step	back	to	see	where	Terraform	fits	into	the	bigger
picture	of	software	delivery.

In	this	chapter,	I’ll	dive	into	the	following	topics:

The	rise	of	DevOps

What	is	infrastructure	as	code?

Benefits	of	infrastructure	as	code

How	Terraform	works

How	Terraform	compares	to	other	infrastructure	as	code	tools

The	Rise	of	DevOps
In	the	not-so-distant	past,	if	you	wanted	to	build	a	software	company,	you
also	had	to	manage	a	lot	of	hardware.	You	would	set	up	cabinets	and
racks,	load	them	up	with	servers,	hook	up	wiring,	install	cooling,	build

redundant	power	systems,	and	so	on.	It	made	sense	to	have	one	team,
typically	called	Operations	(“Ops”),	dedicated	to	managing	this	hardware,
and	a	separate	team,	typically	called	Developers	(“Devs”),	dedicated	to
writing	the	software.

The	typical	Dev	team	would	build	an	application	and	“toss	it	over	the
wall”	to	the	Ops	team.	It	was	then	up	to	Ops	to	figure	out	how	to	deploy
and	run	that	application.	Most	of	this	was	done	manually.	In	part,	that	was
unavoidable,	because	much	of	the	work	had	to	do	with	physically	hooking
up	hardware	(e.g.,	racking	servers,	hooking	up	network	cables).	But	even
the	work	Ops	did	in	software,	such	as	installing	the	application	and	its
dependencies,	was	often	done	by	manually	executing	commands	on	a
server.

This	works	well	for	a	while,	but	as	the	company	grows,	you	eventually	run
into	problems.	It	typically	plays	out	like	this:	since	releases	are	done
manually,	as	the	number	of	servers	increases,	releases	become	slow,
painful,	and	unpredictable.	The	Ops	team	occasionally	makes	mistakes,	so
you	end	up	with	snowflake	servers,	where	each	one	has	a	subtly	different
configuration	from	all	the	others	(a	problem	known	as	configuration	drift).
As	a	result,	the	number	of	bugs	increases.	Developers	shrug	and	say	“It
works	on	my	machine!”	Outages	and	downtime	become	more	frequent.

The	Ops	team,	tired	from	their	pagers	going	off	at	3	a.m.	after	every
release,	reduce	the	release	cadence	to	once	per	week.	Then	to	once	per
month.	Then	once	every	six	months.	Weeks	before	the	biannual	release,
teams	start	trying	to	merge	all	their	projects	together,	leading	to	a	huge
mess	of	merge	conflicts.	No	one	can	stabilize	the	release	branch.	Teams
start	blaming	each	other.	Silos	form.	The	company	grinds	to	a	halt.

Nowadays,	a	profound	shift	is	taking	place.	Instead	of	managing	their	own
data	centers,	many	companies	are	moving	to	the	cloud,	taking	advantage
of	services	such	as	Amazon	Web	Services,	Azure,	and	Google	Cloud.
Instead	of	investing	heavily	in	hardware,	many	Ops	teams	are	spending	all
their	time	working	on	software,	using	tools	such	as	Chef,	Puppet,
Terraform,	and	Docker.	Instead	of	racking	servers	and	plugging	in
network	cables,	many	sysadmins	are	writing	code.

As	a	result,	both	Dev	and	Ops	spend	most	of	their	time	working	on
software,	and	the	distinction	between	the	two	teams	is	blurring.	It	may	still
make	sense	to	have	a	separate	Dev	team	responsible	for	the	application
code	and	an	Ops	team	responsible	for	the	operational	code,	but	it’s	clear
that	Dev	and	Ops	need	to	work	more	closely	together.	This	is	where	the
DevOps	movement	comes	from.

DevOps	isn’t	the	name	of	a	team	or	a	job	title	or	a	particular	technology.
Instead,	it’s	a	set	of	processes,	ideas,	and	techniques.	Everyone	has	a
slightly	different	definition	of	DevOps,	but	for	this	book,	I’m	going	to	go
with	the	following:

The	goal	of	DevOps	is	to	make	software	delivery	vastly	more	efficient.

Instead	of	multiday	merge	nightmares,	you	integrate	code	continuously
and	always	keep	it	in	a	deployable	state.	Instead	of	deploying	code	once
per	month,	you	can	deploy	code	dozens	of	times	per	day,	or	even	after
every	single	commit.	And	instead	of	constant	outages	and	downtime,	you
build	resilient,	self-healing	systems,	and	use	monitoring	and	alerting	to
catch	problems	that	can’t	be	resolved	automatically.

The	results	from	companies	that	have	undergone	DevOps	transformations
are	astounding.	For	example,	Nordstrom	found	that	after	applying	DevOps

practices	to	its	organization,	it	was	able	to	double	the	number	of	features	it
delivered	per	month,	reduce	defects	by	50%,	reduce	lead	times	(the	time
from	coming	up	with	an	idea	to	running	code	in	production)	by	60%,	and
reduce	the	number	of	production	incidents	by	60%	to	90%.	After	HP’s
LaserJet	Firmware	division	began	using	DevOps	practices,	the	amount	of
time	its	developers	spent	on	developing	new	features	went	from	5%	to
40%	and	overall	development	costs	were	reduced	by	40%.	Etsy	used
DevOps	practices	to	go	from	stressful,	infrequent	deployments	that	caused
numerous	outages	to	deploying	25	to	50	times	per	day,	with	far	fewer
outages.

There	are	four	core	values	in	the	DevOps	movement:	Culture,
Automation,	Measurement,	and	Sharing	(sometimes	abbreviated	as	the
acronym	CAMS).	This	book	is	not	meant	as	a	comprehensive	overview	of
DevOps,	so	I	will	just	focus	on	one	of	these	values:	automation.

The	goal	is	to	automate	as	much	of	the	software	delivery	process	as
possible.	That	means	that	you	manage	your	infrastructure	not	by	clicking
around	a	web	page	or	manually	executing	shell	commands,	but	through
code.	This	is	a	concept	that	is	typically	called	infrastructure	as	code.

What	Is	Infrastructure	as	Code?
The	idea	behind	infrastructure	as	code	(IAC)	is	that	you	write	and	execute
code	to	define,	deploy,	and	update	your	infrastructure.	This	represents	an
important	shift	in	mindset	where	you	treat	all	aspects	of	operations	as
software—even	those	aspects	that	represent	hardware	(e.g.,	setting	up
physical	servers).	In	fact,	a	key	insight	of	DevOps	is	that	you	can	manage
almost	everything	in	code,	including	servers,	databases,	networks,	log
files,	application	configuration,	documentation,	automated	tests,

1

http://devopsdictionary.com/wiki/CAMS

deployment	processes,	and	so	on.

There	are	four	broad	categories	of	IAC	tools:

Ad	hoc	scripts

Configuration	management	tools

Server	templating	tools

Server	provisioning	tools

Let’s	look	at	these	one	at	a	time.

Ad	Hoc	Scripts
The	most	straightforward	approach	to	automating	anything	is	to	write	an
ad	hoc	script.	You	take	whatever	task	you	were	doing	manually,	break	it
down	into	discrete	steps,	use	your	favorite	scripting	language	(e.g.,	Bash,
Ruby,	Python)	to	define	each	of	those	steps	in	code,	and	execute	that
script	on	your	server,	as	shown	in	Figure	1-1.

Figure	1-1.	Running	an	ad	hoc	script	on	your	server

For	example,	here	is	a	Bash	script	called	setup-webserver.sh	that
configures	a	web	server	by	installing	dependencies,	checking	out	some
code	from	a	Git	repo,	and	firing	up	the	Apache	web	server:

#	Update	the	apt-get	cache

sudo	apt-get	update

#	Install	PHP	and	Apache

sudo	apt-get	install	-y	php	apache2

#	Copy	the	code	from	the	repository

sudo	git	clone	https://github.com/brikis98/php-app.git	

/var/www/html/app

#	Start	Apache

sudo	service	apache2	start

The	great	thing	about	ad	hoc	scripts	is	that	you	can	use	popular,	general-
purpose	programming	languages	and	you	can	write	the	code	however	you

want.	The	terrible	thing	about	ad	hoc	scripts	is	that	you	can	use	popular,
general-purpose	programming	languages	and	you	can	write	the	code
however	you	want.

Whereas	tools	that	are	purpose-built	for	IAC	provide	concise	APIs	for
accomplishing	complicated	tasks,	if	you’re	using	a	general-purpose
programming	language,	you	have	to	write	completely	custom	code	for
every	task.	Moreover,	tools	designed	for	IAC	usually	enforce	a	particular
structure	for	your	code,	whereas	with	a	general-purpose	programming
language,	each	developer	will	use	his	or	her	own	style	and	do	something
different.	Neither	of	these	problems	is	a	big	deal	for	an	eight-line	script
that	installs	Apache,	but	it	gets	messy	if	you	try	to	use	ad	hoc	scripts	to
manage	dozens	of	servers,	databases,	load	balancers,	network
configurations,	and	so	on.

If	you’ve	ever	had	to	maintain	someone	else’s	repository	of	ad	hoc	scripts,
you	know	that	it	almost	always	devolves	into	a	mess	of	unmaintainable
spaghetti	code.	Ad	hoc	scripts	are	great	for	small,	one-off	tasks,	but	if
you’re	going	to	be	managing	all	of	your	infrastructure	as	code,	then	you
should	use	an	IAC	tool	that	is	purpose-built	for	the	job.

Configuration	Management	Tools
Chef,	Puppet,	Ansible,	and	SaltStack	are	all	configuration	management
tools,	which	means	they	are	designed	to	install	and	manage	software	on
existing	servers.	For	example,	here	is	an	Ansible	Role	called	web-
server.yml	that	configures	the	same	Apache	web	server	as	the	setup-
webserver.sh	script:

-	name:	Update	the	apt-get	cache

		apt:

				update_cache:	yes

-	name:	Install	PHP

		apt:

				name:	php

-	name:	Install	Apache

		apt:

				name:	apache2

-	name:	Copy	the	code	from	the	repository

		git:	repo=https://github.com/brikis98/php-app.git	

dest=/var/www/html/app

-	name:	Start	Apache

		service:	name=apache2	state=started	enabled=yes

The	code	looks	similar	to	the	Bash	script,	but	using	a	tool	like	Ansible
offers	a	number	of	advantages:

Coding	conventions

Ansible	enforces	a	consistent,	predictable	structure,	including
documentation,	file	layout,	clearly	named	parameters,	secrets
management,	and	so	on.	While	every	developer	organizes	his	or	her	ad
hoc	scripts	in	a	different	way,	most	configuration	management	tools
come	with	a	set	of	conventions	that	makes	it	easier	to	navigate	the
code.

Idempotence

Writing	an	ad	hoc	script	that	works	once	isn’t	too	difficult;	writing	an
ad	hoc	script	that	works	correctly	even	if	you	run	it	over	and	over
again	is	a	lot	harder.	Every	time	you	go	to	create	a	folder	in	your
script,	you	need	to	remember	to	check	if	that	folder	already	exists;
every	time	you	add	a	line	of	configuration	to	a	file,	you	need	to	check
that	line	doesn’t	already	exist;	every	time	you	want	to	run	an	app,	you
need	to	check	that	the	app	isn’t	already	running.

Code	that	works	correctly	no	matter	how	many	times	you	run	it	is

called	idempotent	code.	To	make	the	Bash	script	from	the	previous
section	idempotent,	you’d	have	to	add	many	lines	of	code,	including
lots	of	if-statements.	Most	Ansible	functions,	on	the	other	hand,	are
idempotent	by	default.	For	example,	the	web-server.yml	Ansible	role
will	only	install	Apache	if	it	isn’t	installed	already	and	will	only	try	to
start	the	Apache	web	server	if	it	isn’t	running	already.

Distribution

Ad	hoc	scripts	are	designed	to	run	on	a	single,	local	machine.	Ansible
and	other	configuration	management	tools	are	designed	specifically	for
managing	large	numbers	of	remote	servers,	as	shown	in	Figure	1-2.

Figure	1-2.	A	configuration	management	tool	like	Ansible	can	execute	your	code
across	a	large	number	of	servers

For	example,	to	apply	the	web-server.yml	role	to	five	servers,	you	first
create	a	file	called	hosts	that	contains	the	IP	addresses	of	those	servers:

[webservers]

11.11.11.11

11.11.11.12

11.11.11.13

11.11.11.14

11.11.11.15

Next,	you	define	the	following	Ansible	Playbook:

-	hosts:	webservers

		roles:

		-	webserver

Finally,	you	execute	the	playbook	as	follows:

ansible-playbook	playbook.yml

This	will	tell	Ansible	to	configure	all	five	servers	in	parallel.
Alternatively,	by	setting	a	single	parameter	called	serial	in	the
playbook,	you	can	do	a	rolling	deployment,	which	updates	the	servers
in	batches.	For	example,	setting	serial	to	2	will	tell	Ansible	to
update	two	of	the	servers	at	a	time,	until	all	five	are	done.	Duplicating
any	of	this	logic	in	an	ad	hoc	script	will	take	dozens	or	even	hundreds
of	lines	of	code.

Server	Templating	Tools
An	alternative	to	configuration	management	that	has	been	growing	in
popularity	recently	are	server	templating	tools	such	as	Docker,	Packer,
and	Vagrant.	Instead	of	launching	a	bunch	of	servers	and	configuring	them
by	running	the	same	code	on	each	one,	the	idea	behind	server	templating
tools	is	to	create	an	image	of	a	server	that	captures	a	fully	self-contained
“snapshot”	of	the	operating	system,	the	software,	the	files,	and	all	other
relevant	details.	You	can	then	use	some	other	IAC	tool	to	install	that
image	on	all	of	your	servers,	as	shown	in	Figure	1-3.

Figure	1-3.	A	server	templating	tool	like	Packer	can	be	used	to	create	a	self-contained
image	of	a	server.	You	can	then	use	other	tools,	such	as	Ansible,	to	install	that	image

across	all	of	your	servers.

As	shown	in	Figure	1-4,	there	are	two	broad	categories	of	tools	for
working	with	images:

Virtual	Machines

A	virtual	machine	(VM)	emulates	an	entire	computer	system,	including
the	hardware.	You	run	a	hypervisor,	such	as	VMWare,	VirtualBox,	or
Parallels,	to	virtualize	(i.e.,	simulate)	the	underlying	CPU,	memory,
hard	drive,	and	networking.	The	benefit	of	this	is	that	any	VM	Image
you	run	on	top	of	the	hypervisor	can	only	see	the	virtualized	hardware,
so	it’s	fully	isolated	from	the	host	machine	and	any	other	VM	Images,
and	will	run	exactly	the	same	way	in	all	environments	(e.g.,	your
computer,	a	QA	server,	a	production	server,	etc).	The	drawback	is	that
virtualizing	all	this	hardware	and	running	a	totally	separate	operating
system	for	each	VM	incurs	a	lot	of	overhead	in	terms	of	CPU	usage,
memory	usage,	and	startup	time.	You	can	define	VM	Images	as	code
using	tools	such	as	Packer	and	Vagrant.

Containers

A	container	emulates	the	user	space	of	an	operating	system. 	You	run
a	container	engine,	such	as	Docker	or	CoreOS	rkt,	to	create	isolated
processes,	memory,	mount	points,	and	networking.	The	benefit	of	this
is	that	any	container	you	run	on	top	of	the	container	engine	can	only
see	its	own	user	space,	so	it’s	isolated	from	the	host	machine	and	other
containers,	and	will	run	exactly	the	same	way	in	all	environments
(e.g.,	your	computer,	a	QA	server,	a	production	server,	etc.).	The
drawback	is	that	all	the	containers	running	on	a	single	server	share	that
server’s	operating	system	kernel	and	hardware,	so	the	isolation	is	not
as	secure	as	with	VMs. 	However,	because	the	kernel	and	hardware
are	shared,	your	containers	can	boot	up	in	milliseconds	and	have
virtually	no	CPU	or	memory	overhead.	You	can	define	Container
Images	as	code	using	tools	such	as	Docker	and	CoreOs	rkt.

2

3

Figure	1-4.	The	two	main	types	of	images:	VMs,	on	the	left,	and	containers,	on	the
right.	VMs	virtualize	the	hardware,	whereas	containers	only	virtualize	user	space.

For	example,	here	is	a	Packer	template	called	web-server.json	that	creates
an	Amazon	Machine	Image	(AMI),	which	is	a	VM	Image	you	can	run	on
Amazon	Web	Services	(AWS):

{

		"builders":	[{

				"ami_name":	"packer-example",

				"instance_type":	"t2.micro",

				"region":	"us-east-2",

				"type":	"amazon-ebs",

				"source_ami":	"ami-0c55b159cbfafe1f0",

				"ssh_username":	"ubuntu"

		}],

		"provisioners":	[{

				"type":	"shell",

				"inline":	[

						"sudo	apt-get	update",

						"sudo	apt-get	install	-y	php	apache2",

						"sudo	git	clone	https://github.com/brikis98/php-

app.git	/var/www/html/app"

],

				"environment_vars":	[

						"DEBIAN_FRONTEND=noninteractive"

]

		}]

}

This	Packer	template	configures	the	same	Apache	web	server	you	saw	in
setup-webserver.sh	using	the	same	Bash	code. 	The	only	difference
between	the	preceding	code	and	previous	examples	is	that	this	Packer
template	does	not	start	the	Apache	web	server	(e.g.,	by	calling	sudo
service	apache2	start).	That’s	because	server	templates	are
typically	used	to	install	software	in	images,	but	it’s	only	when	you	run	the
image	(e.g.,	by	deploying	it	on	a	server)	that	you	should	actually	run	that
software.

You	can	build	an	AMI	from	this	template	by	running	packer	build
webserver.json,	and	once	the	build	completes,	you	can	install	that
AMI	on	all	of	your	AWS	servers,	configure	each	server	to	run	Apache
when	the	server	is	booting	(you’ll	see	an	example	of	this	in	the	next
section),	and	they	will	all	run	exactly	the	same	way.

Note	that	the	different	server	templating	tools	have	slightly	different
purposes.	Packer	is	typically	used	to	create	images	that	you	run	directly	on
top	of	production	servers,	such	as	an	AMI	that	you	run	in	your	production
AWS	account.	Vagrant	is	typically	used	to	create	images	that	you	run	on
your	development	computers,	such	as	a	VirtualBox	image	that	you	run	on
your	Mac	or	Windows	laptop.	Docker	is	typically	used	to	create	images	of

4

individual	applications.	You	can	run	the	Docker	images	on	production	or
development	computers,	so	long	as	some	other	tool	has	configured	that
computer	with	the	Docker	Engine.	For	example,	a	common	pattern	is	to
use	Packer	to	create	an	AMI	that	has	the	Docker	Engine	installed,	deploy
that	AMI	on	a	cluster	of	servers	in	your	AWS	account,	and	then	deploy
individual	Docker	containers	across	that	cluster	to	run	your	applications.

Server	templating	is	a	key	component	of	the	shift	to	immutable
infrastructure.	This	idea	is	inspired	by	functional	programming,	where
variables	are	immutable,	so	once	you’ve	set	a	variable	to	a	value,	you	can
never	change	that	variable	again.	If	you	need	to	update	something,	you
create	a	new	variable.	Since	variables	never	change,	it’s	a	lot	easier	to
reason	about	your	code.

The	idea	behind	immutable	infrastructure	is	similar:	once	you’ve	deployed
a	server,	you	never	make	changes	to	it	again.	If	you	need	to	update
something	(e.g.,	deploy	a	new	version	of	your	code),	you	create	a	new
image	from	your	server	template	and	you	deploy	it	on	a	new	server.	Since
servers	never	change,	it’s	a	lot	easier	to	reason	about	what’s	deployed.

Server	Provisioning	Tools
Whereas	configuration	management	and	server	templating	tools	define	the
code	that	runs	on	each	server,	server	provisioning	tools	such	as	Terraform,
CloudFormation,	and	OpenStack	Heat	are	responsible	for	creating	the
servers	themselves.	In	fact,	you	can	use	provisioning	tools	to	not	only
create	servers,	but	also	databases,	caches,	load	balancers,	queues,
monitoring,	subnet	configurations,	firewall	settings,	routing	rules,	SSL
certificates,	and	almost	every	other	aspect	of	your	infrastructure,	as	shown
in	Figure	1-5.

Figure	1-5.	Server	provisioning	tools	can	be	used	with	your	cloud	provider	to	create
servers,	databases,	load	balancers,	and	all	other	parts	of	your	infrastructure.

For	example,	the	following	code	deploys	a	web	server	using	Terraform:

resource	"aws_instance"	"app"	{

		instance_type					=	"t2.micro"

		availability_zone	=	"us-east-2a"

		ami															=	"ami-0c55b159cbfafe1f0"

		user_data	=	<<-EOF

														#!/bin/bash

														sudo	service	apache2	start

														EOF

}

Don’t	worry	if	some	of	the	syntax	isn’t	familiar	to	you	yet.	For	now,	just
focus	on	two	parameters:

ami

This	parameter	specifies	the	ID	of	an	AMI	to	deploy	on	the	server.
You	could	set	this	parameter	to	the	ID	of	an	AMI	built	from	the	web-
server.json	Packer	template	in	the	previous	section,	which	has	PHP,
Apache,	and	the	application	source	code.

user_data

This	is	a	Bash	script	that	executes	when	the	web	server	is	booting.	The
preceding	code	uses	this	script	to	boot	up	Apache.

In	other	words,	this	code	shows	you	server	provisioning	and	server
templating	working	together,	which	is	a	common	pattern	in	immutable
infrastructure.

Benefits	of	Infrastructure	as	Code

Now	that	you’ve	seen	all	the	different	flavors	of	infrastructure	as	code,	a
good	question	to	ask	is,	why	bother?	Why	learn	a	bunch	of	new	languages
and	tools	and	encumber	yourself	with	more	code	to	manage?

The	answer	is	that	code	is	powerful.	In	exchange	for	the	up-front
investment	of	converting	your	manual	practices	to	code,	you	get	dramatic
improvements	in	your	ability	to	deliver	software.	According	to	the	2016
State	of	DevOps	Report,	organizations	that	use	DevOps	practices,	such	as
IAC,	deploy	200	times	more	frequently,	recover	from	failures	24	times
faster,	and	have	lead	times	that	are	2,555	times	lower.

When	your	infrastructure	is	defined	as	code,	you	are	able	to	use	a	wide
variety	of	software	engineering	practices	to	dramatically	improve	your
software	delivery	process,	including:

Self-service

Most	teams	that	deploy	code	manually	have	a	small	number	of
sysadmins	(often,	just	one)	who	are	the	only	ones	who	know	all	the
magic	incantations	to	make	the	deployment	work	and	are	the	only	ones
with	access	to	production.	This	becomes	a	major	bottleneck	as	the
company	grows.	If	your	infrastructure	is	defined	in	code,	then	the
entire	deployment	process	can	be	automated,	and	developers	can	kick
off	their	own	deployments	whenever	necessary.

Speed	and	safety

If	the	deployment	process	is	automated,	it’ll	be	significantly	faster,
since	a	computer	can	carry	out	the	deployment	steps	far	faster	than	a
person;	and	safer,	since	an	automated	process	will	be	more	consistent,
more	repeatable,	and	not	prone	to	manual	error.

Documentation

Instead	of	the	state	of	your	infrastructure	being	locked	away	in	a	single

https://puppet.com/resources/white-paper/2016-state-of-devops-report

sysadmin’s	head,	you	can	represent	the	state	of	your	infrastructure	in
source	files	that	anyone	can	read.	In	other	words,	IAC	acts	as
documentation,	allowing	everyone	in	the	organization	to	understand
how	things	work,	even	if	the	sysadmin	goes	on	vacation.

Version	control

You	can	store	your	IAC	source	files	in	version	control,	which	means
the	entire	history	of	your	infrastructure	is	now	captured	in	the	commit
log.	This	becomes	a	powerful	tool	for	debugging	issues,	as	any	time	a
problem	pops	up,	your	first	step	will	be	to	check	the	commit	log	and
find	out	what	changed	in	your	infrastructure,	and	your	second	step
may	be	to	resolve	the	problem	by	simply	reverting	back	to	a	previous,
known-good	version	of	your	IAC	code.

Validation

If	the	state	of	your	infrastructure	is	defined	in	code,	then	for	every
single	change,	you	can	perform	a	code	review,	run	a	suite	of
automated	tests,	and	pass	the	code	through	static	analysis	tools,	all
practices	that	are	known	to	significantly	reduce	the	chance	of	defects.

Reuse

You	can	package	your	infrastructure	into	reusable	modules,	so	that
instead	of	doing	every	deployment	for	every	product	in	every
environment	from	scratch,	you	can	build	on	top	of	known,
documented,	battle-tested	pieces.

Happiness

There	is	one	other	very	important,	and	often	overlooked,	reason	for
why	you	should	use	IAC:	happiness.	Deploying	code	and	managing
infrastructure	manually	is	repetitive	and	tedious.	Developers	and
sysadmins	resent	this	type	of	work,	as	it	involves	no	creativity,	no
challenge,	and	no	recognition.	You	could	deploy	code	perfectly	for
months,	and	no	one	will	take	notice—until	that	one	day	when	you
mess	it	up.	That	creates	a	stressful	and	unpleasant	environment.	IAC
offers	a	better	alternative	that	allows	computers	to	do	what	they	do
best	(automation)	and	developers	to	do	what	they	do	best	(coding).

5

Now	that	you	have	a	sense	of	why	IAC	is	important,	the	next	question	is
whether	Terraform	is	the	right	IAC	tool	for	you.	To	answer	that,	I’m	first
going	to	do	a	very	quick	primer	on	how	Terraform	works,	and	then	I’ll
compare	it	to	the	other	popular	IAC	options	out	there,	such	as	Chef,
Puppet,	and	Ansible.

How	Terraform	Works
Here	is	a	high-level	and	somewhat	simplified	view	of	how	Terraform
works.	Terraform	is	an	open	source	tool	created	by	HashiCorp	and	written
in	the	Go	programming	language.	The	Go	code	compiles	down	into	a
single	binary	(or	rather,	one	binary	for	each	of	the	supported	operating
systems)	called,	not	surprisingly,	terraform.

You	can	use	this	binary	to	deploy	infrastructure	from	your	laptop	or	a
build	server	or	just	about	any	other	computer,	and	you	don’t	need	to	run
any	extra	infrastructure	to	make	that	happen.	That’s	because	under	the
hood,	the	terraform	binary	makes	API	calls	on	your	behalf	to	one	or
more	providers,	such	as	Amazon	Web	Services	(AWS),	Azure,	Google
Cloud,	DigitalOcean,	OpenStack,	etc.	That	means	Terraform	gets	to
leverage	the	infrastructure	those	providers	are	already	running	for	their
API	servers,	as	well	as	the	authentication	mechanisms	you’re	already
using	with	those	providers	(e.g.,	the	API	keys	you	already	have	for	AWS).

How	does	Terraform	know	what	API	calls	to	make?	The	answer	is	that
you	create	Terraform	configurations,	which	are	text	files	that	specify	what
infrastructure	you	wish	to	create.	These	configurations	are	the	“code”	in
“infrastructure	as	code.”	Here’s	an	example	Terraform	configuration:

resource	"aws_instance"	"example"	{

		ami											=	"ami-0c55b159cbfafe1f0"

		instance_type	=	"t2.micro"

}

resource	"google_dns_record_set"	"a"	{

		name									=	"demo.google-example.com"

		managed_zone	=	"example-zone"

		type									=	"A"

		ttl										=	300

		rrdatas						=	[aws_instance.example.public_ip]

}

Even	if	you’ve	never	seen	Terraform	code	before,	you	shouldn’t	have	too
much	trouble	reading	it.	This	snippet	tells	Terraform	to	make	API	calls	to
AWS	to	deploy	a	server	and	then	make	API	calls	to	Google	Cloud	to
create	a	DNS	entry	pointing	to	the	AWS	server’s	IP	address.	In	just	a
single,	simple	syntax,	Terraform	allows	you	to	deploy	interconnected
resources	across	multiple	cloud	providers.

You	can	define	your	entire	infrastructure—servers,	databases,	load
balancers,	network	topology,	and	so	on—in	Terraform	configuration	files
and	commit	those	files	to	version	control.	You	then	run	certain	Terraform
commands,	such	as	terraform	apply,	to	deploy	that	infrastructure.
The	terraform	binary	parses	your	code,	translates	it	into	a	series	of
API	calls	to	the	cloud	providers	specified	in	the	code,	and	makes	those
API	calls	as	efficiently	as	possible	on	your	behalf,	as	shown	in	Figure	1-6.

Figure	1-6.	Terraform	is	a	binary	that	translates	the	contents	of	your	configurations
into	API	calls	to	cloud	providers

When	someone	on	your	team	needs	to	make	changes	to	the	infrastructure,
instead	of	updating	the	infrastructure	manually	and	directly	on	the	servers,
they	make	their	changes	in	the	Terraform	configuration	files,	validate
those	changes	through	automated	tests	and	code	reviews,	commit	the
updated	code	to	version	control,	and	then	run	the	terraform	apply
command	to	have	Terraform	make	the	necessary	API	calls	to	deploy	the
changes.

TRANSPARENT	PORTABILITY	BETWEEN	CLOUD
PROVIDERS

Since	Terraform	supports	many	different	cloud	providers,	a	common
question	that	comes	up	is	whether	it	supports	transparent	portability
between	them.	For	example,	if	you	used	Terraform	to	define	a	bunch	of
servers,	databases,	load	balancers,	and	other	infrastructure	in	AWS,	could
you	tell	Terraform	to	deploy	exactly	the	same	infrastructure	in	another	cloud
provider,	such	as	Azure	or	Google	Cloud,	in	just	a	few	clicks?

This	question	turns	out	to	be	a	bit	of	a	red	herring.	The	reality	is	that	you
can’t	deploy	“exactly	the	same	infrastructure”	in	a	different	cloud	provider

because	the	cloud	providers	don’t	offer	the	same	types	of	infrastructure!	The
servers,	load	balancers,	and	databases	offered	by	AWS	are	very	different
than	those	in	Azure	and	Google	Cloud	in	terms	of	features,	configuration,
management,	security,	scalability,	availability,	observability,	and	so	on.
There	is	no	way	to	“transparently”	paper	over	these	differences,	especially
as	functionality	in	one	cloud	provider	often	doesn’t	exist	at	all	in	the	others.

Terraform’s	approach	is	to	allow	you	to	write	code	that	is	specific	to	each
provider,	taking	advantage	of	that	provider’s	unique	functionality,	but	to	use
the	same	language,	toolset,	and	infrastructure	as	code	practices	under	the
hood	for	all	providers.

How	Terraform	Compares	to	Other
Infrastructure	as	Code	Tools
Infrastructure	as	code	is	wonderful,	but	the	process	of	picking	an	IAC	tool
is	not.	Many	of	the	IAC	tools	overlap	in	what	they	do.	Many	of	them	are
open	source.	Many	of	them	offer	commercial	support.	Unless	you’ve	used
each	one	yourself,	it’s	not	clear	what	criteria	you	should	use	to	pick	one	or
the	other.

What	makes	this	even	harder	is	that	most	of	the	comparisons	you	find
between	these	tools	do	little	more	than	list	the	general	properties	of	each
one	and	make	it	sound	like	you	could	be	equally	successful	with	any	of
them.	And	while	that’s	technically	true,	it’s	not	helpful.	It’s	a	bit	like
telling	a	programming	newbie	that	you	could	be	equally	successful
building	a	website	with	PHP,	C,	or	assembly—a	statement	that’s
technically	true,	but	one	that	omits	a	huge	amount	of	information	that	is
essential	for	making	a	good	decision.

In	the	following	sections,	I’m	going	to	do	a	detailed	comparison	between

the	most	popular	configuration	management	and	provisioning	tools:
Terraform,	Chef,	Puppet,	Ansible,	SaltStack,	CloudFormation,	and
OpenStack	Heat.	My	goal	is	to	help	you	decide	if	Terraform	is	a	good
choice	by	explaining	why	my	company,	Gruntwork,	picked	Terraform	as
our	IAC	tool	of	choice	and,	in	some	sense,	why	I	wrote	this	book. 	As
with	all	technology	decisions,	it’s	a	question	of	trade-offs	and	priorities,
and	while	your	particular	priorities	may	be	different	than	mine,	I	hope	that
sharing	this	thought	process	will	help	you	make	your	own	decision.

Here	are	the	main	trade-offs	to	consider:

Configuration	management	versus	provisioning

Mutable	infrastructure	versus	immutable	infrastructure

Procedural	language	versus	declarative	language

Master	versus	masterless

Agent	versus	agentless

Large	community	versus	small	community

Mature	versus	cutting-edge

Configuration	Management	Versus	Provisioning
As	you	saw	earlier,	Chef,	Puppet,	Ansible,	and	SaltStack	are	all
configuration	management	tools,	whereas	CloudFormation,	Terraform,
and	OpenStack	Heat	are	all	provisioning	tools.	Although	the	distinction	is
not	entirely	clear	cut,	as	configuration	management	tools	can	typically	do
some	degree	of	provisioning	(e.g.,	you	can	deploy	a	server	with	Ansible)
and	provisioning	tools	can	typically	do	some	degree	of	configuration	(e.g.,
you	can	run	configuration	scripts	on	each	server	you	provision	with
Terraform),	you	typically	want	to	pick	the	tool	that’s	the	best	fit	for	your

6

7

http://www.gruntwork.io

use	case.

In	particular,	if	you	use	server	templating	tools	such	as	Docker	or	Packer,
the	vast	majority	of	your	configuration	management	needs	are	already
taken	care	of.	Once	you	have	an	image	created	from	a	Dockerfile	or
Packer	template,	all	that’s	left	to	do	is	provision	the	infrastructure	for
running	those	images.	And	when	it	comes	to	provisioning,	a	server
provisioning	tool	is	going	to	be	your	best	choice.

That	said,	if	you’re	not	using	server	templating	tools,	a	good	alternative	is
to	use	a	configuration	management	and	provisioning	tool	together.	For
example,	you	might	use	Terraform	to	provision	your	servers	and	run	Chef
to	configure	each	one.

Mutable	Infrastructure	Versus	Immutable
Infrastructure
Configuration	management	tools	such	as	Chef,	Puppet,	Ansible,	and
SaltStack	typically	default	to	a	mutable	infrastructure	paradigm.	For
example,	if	you	tell	Chef	to	install	a	new	version	of	OpenSSL,	it’ll	run	the
software	update	on	your	existing	servers	and	the	changes	will	happen	in
place.	Over	time,	as	you	apply	more	and	more	updates,	each	server	builds
up	a	unique	history	of	changes.	As	a	result,	each	server	becomes	slightly
different	than	all	the	others,	leading	to	subtle	configuration	bugs	that	are
difficult	to	diagnose	and	reproduce	(this	is	the	same	configuration	drift
problem	that	happens	when	you	manage	servers	manually,	although	it’s
much	less	problematic	when	using	a	configuration	management	tool).
Even	with	automated	tests	these	bugs	are	hard	to	catch,	as	a	configuration
management	change	may	work	just	fine	on	a	test	server,	but	that	same
change	may	behave	differently	on	a	production	server	because	the

7

production	server	has	accumulated	months	of	changes	that	aren’t	reflected
in	the	test	environment.

If	you’re	using	a	provisioning	tool	such	as	Terraform	to	deploy	machine
images	created	by	Docker	or	Packer,	then	most	“changes”	are	actually
deployments	of	a	completely	new	server.	For	example,	to	deploy	a	new
version	of	OpenSSL,	you	would	use	Packer	to	create	a	new	image	with	the
new	version	of	OpenSSL,	deploy	that	image	across	a	set	of	new	servers,
and	then	undeploy	the	old	servers.	Since	every	deployment	uses
immutable	images	on	fresh	servers,	this	approach	reduces	the	likelihood	of
configuration	drift	bugs,	makes	it	easier	to	know	exactly	what	software	is
running	on	each	server,	and	allows	you	to	easily	deploy	any	previous
version	of	the	software	(any	previous	image)	at	any	time.	It	also	makes
your	automated	testing	more	effective,	as	an	immutable	image	that	passes
your	tests	in	the	test	environment	is	likely	to	behave	exactly	the	same	way
in	the	production	environment.

Of	course,	it’s	possible	to	force	configuration	management	tools	to	do
immutable	deployments	too,	but	it’s	not	the	idiomatic	approach	for	those
tools,	whereas	it’s	a	natural	way	to	use	provisioning	tools.	It’s	also	worth
mentioning	that	the	immutable	approach	has	downsides	of	its	own.	For
example,	rebuilding	an	image	from	a	server	template	and	redeploying	all
your	servers	for	a	trivial	change	can	take	a	long	time.	Moreover,
immutability	only	lasts	until	you	actually	run	the	image.	Once	a	server	is
up	and	running,	it’ll	start	making	changes	on	the	hard	drive	and
experiencing	some	degree	of	configuration	drift	(although	this	is	mitigated
if	you	deploy	frequently).

Procedural	Language	Versus	Declarative
Language

Chef	and	Ansible	encourage	a	procedural	style	where	you	write	code	that
specifies,	step	by	step,	how	to	achieve	some	desired	end	state.	Terraform,
CloudFormation,	SaltStack,	Puppet,	and	Open	Stack	Heat	all	encourage	a
more	declarative	style	where	you	write	code	that	specifies	your	desired
end	state,	and	the	IAC	tool	itself	is	responsible	for	figuring	out	how	to
achieve	that	state.

To	demonstrate	the	difference,	let’s	go	through	an	example.	Imagine	you
wanted	to	deploy	10	servers	(“EC2	Instances”	in	AWS	lingo)	to	run	an
AMI	with	ID	ami-0c55b159cbfafe1f0	(Ubuntu	18.04).	Here	is	a
simplified	example	of	an	Ansible	template	that	does	this	using	a
procedural	approach:

-	ec2:

				count:	10

				image:	ami-0c55b159cbfafe1f0

				instance_type:	t2.micro

And	here	is	a	simplified	example	of	a	Terraform	configuration	that	does
the	same	thing	using	a	declarative	approach:

resource	"aws_instance"	"example"	{

		count									=	10

		ami											=	"ami-0c55b159cbfafe1f0"

		instance_type	=	"t2.micro"

}

Now	at	the	surface,	these	two	approaches	may	look	similar,	and	when	you
initially	execute	them	with	Ansible	or	Terraform,	they	will	produce
similar	results.	The	interesting	thing	is	what	happens	when	you	want	to
make	a	change.

For	example,	imagine	traffic	has	gone	up	and	you	want	to	increase	the
number	of	servers	to	15.	With	Ansible,	the	procedural	code	you	wrote
earlier	is	no	longer	useful;	if	you	just	updated	the	number	of	servers	to	15
and	reran	that	code,	it	would	deploy	15	new	servers,	giving	you	25	total!
So	instead,	you	have	to	be	aware	of	what	is	already	deployed	and	write	a
totally	new	procedural	script	to	add	the	5	new	servers:

-	ec2:

				count:	5

				image:	ami-0c55b159cbfafe1f0

				instance_type:	t2.micro

With	declarative	code,	since	all	you	do	is	declare	the	end	state	you	want,
and	Terraform	figures	out	how	to	get	to	that	end	state,	Terraform	will	also
be	aware	of	any	state	it	created	in	the	past.	Therefore,	to	deploy	5	more
servers,	all	you	have	to	do	is	go	back	to	the	same	Terraform	configuration
and	update	the	count	from	10	to	15:

resource	"aws_instance"	"example"	{

		count									=	15

		ami											=	"ami-0c55b159cbfafe1f0"

		instance_type	=	"t2.micro"

}

If	you	applied	this	configuration,	Terraform	would	realize	it	had	already
created	10	servers	and	therefore	that	all	it	needed	to	do	was	create	5	new
servers.	In	fact,	before	applying	this	configuration,	you	can	use
Terraform’s	plan	command	to	preview	what	changes	it	would	make:

$	terraform	plan

#	aws_instance.example[11]	will	be	created

+	resource	"aws_instance"	"example"	{

				+	ami												=	"ami-0c55b159cbfafe1f0"

				+	instance_type		=	"t2.micro"

				+	(...)

		}

#	aws_instance.example[12]	will	be	created

+	resource	"aws_instance"	"example"	{

				+	ami												=	"ami-0c55b159cbfafe1f0"

				+	instance_type		=	"t2.micro"

				+	(...)

		}

#	aws_instance.example[13]	will	be	created

+	resource	"aws_instance"	"example"	{

				+	ami												=	"ami-0c55b159cbfafe1f0"

				+	instance_type		=	"t2.micro"

				+	(...)

		}

#	aws_instance.example[14]	will	be	created

+	resource	"aws_instance"	"example"	{

				+	ami												=	"ami-0c55b159cbfafe1f0"

				+	instance_type		=	"t2.micro"

				+	(...)

		}

Plan:	5	to	add,	0	to	change,	0	to	destroy.

Now	what	happens	when	you	want	to	deploy	a	different	version	of	the
app,	such	as	AMI	ID	ami-02bcbb802e03574ba?	With	the	procedural
approach,	both	of	your	previous	Ansible	templates	are	again	not	useful,	so
you	have	to	write	yet	another	template	to	track	down	the	10	servers	you
deployed	previously	(or	was	it	15	now?)	and	carefully	update	each	one	to
the	new	version.	With	the	declarative	approach	of	Terraform,	you	go	back
to	the	exact	same	configuration	file	once	again	and	simply	change	the	ami
parameter	to	ami-02bcbb802e03574ba:

resource	"aws_instance"	"example"	{

		count									=	15

		ami											=	"ami-02bcbb802e03574ba"

		instance_type	=	"t2.micro"

}

Obviously,	these	examples	are	simplified.	Ansible	does	allow	you	to	use
tags	to	search	for	existing	EC2	Instances	before	deploying	new	ones	(e.g.,
using	the	instance_tags	and	count_tag	parameters),	but	having	to
manually	figure	out	this	sort	of	logic	for	every	single	resource	you	manage
with	Ansible,	based	on	each	resource’s	past	history,	can	be	surprisingly
complicated	(e.g.,	finding	existing	instances	not	only	by	tag,	but	also
image	version,	availability	zone,	etc.).	This	highlights	two	major	problems
with	procedural	IAC	tools:

1.	 Procedural	code	does	not	fully	capture	the	state	of	the
infrastructure.	Reading	through	the	three	preceding	Ansible
templates	is	not	enough	to	know	what’s	deployed.	You’d	also
have	to	know	the	order	in	which	those	templates	were	applied.
Had	you	applied	them	in	a	different	order,	you	might	have	ended
up	with	different	infrastructure,	and	that’s	not	something	you	can
see	in	the	code	base	itself.	In	other	words,	to	reason	about	an
Ansible	or	Chef	codebase,	you	have	to	know	the	full	history	of
every	change	that	has	ever	happened.

2.	 Procedural	code	limits	reusability.	The	reusability	of	procedural
code	is	inherently	limited	because	you	have	to	manually	take	into
account	the	current	state	of	the	infrastructure.	Since	that	state	is
constantly	changing,	code	you	used	a	week	ago	may	no	longer	be
usable	because	it	was	designed	to	modify	a	state	of	your
infrastructure	that	no	longer	exists.	As	a	result,	procedural
codebases	tend	to	grow	large	and	complicated	over	time.

With	Terraform’s	declarative	approach,	the	code	always	represents	the
latest	state	of	your	infrastructure.	At	a	glance,	you	can	tell	what’s	currently
deployed	and	how	it’s	configured,	without	having	to	worry	about	history
or	timing.	This	also	makes	it	easy	to	create	reusable	code,	as	you	don’t

have	to	manually	account	for	the	current	state	of	the	world.	Instead,	you
just	focus	on	describing	your	desired	state,	and	Terraform	figures	out	how
to	get	from	one	state	to	the	other	automatically.	As	a	result,	Terraform
codebases	tend	to	stay	small	and	easy	to	understand.

Of	course,	there	are	downsides	to	declarative	languages	too.	Without
access	to	a	full	programming	language,	your	expressive	power	is	limited.
For	example,	some	types	of	infrastructure	changes,	such	as	a	zero-
downtime	deployment,	are	hard	to	express	in	purely	declarative	terms	(but
not	impossible,	as	you’ll	see	in	Chapter	5).	Similarly,	without	the	ability	to
do	“logic”	(e.g.,	if-statements,	loops),	creating	generic,	reusable	code	can
be	tricky.	Fortunately,	Terraform	provides	a	number	of	powerful
primitives—such	as	input	variables,	output	variables,	modules,
create_before_destroy,	count,	ternary	syntax,	and	built-in
functions—that	make	it	possible	to	create	clean,	configurable,	modular
code	even	in	a	declarative	language.	I’ll	come	back	to	these	topics	in
Chapter	4	and	Chapter	5.

Master	Versus	Masterless
By	default,	Chef,	Puppet,	and	SaltStack	all	require	that	you	run	a	master
server	for	storing	the	state	of	your	infrastructure	and	distributing	updates.
Every	time	you	want	to	update	something	in	your	infrastructure,	you	use	a
client	(e.g.,	a	command-line	tool)	to	issue	new	commands	to	the	master
server,	and	the	master	server	either	pushes	the	updates	out	to	all	the	other
servers,	or	those	servers	pull	the	latest	updates	down	from	the	master
server	on	a	regular	basis.

A	master	server	offers	a	few	advantages.	First,	it’s	a	single,	central	place
where	you	can	see	and	manage	the	status	of	your	infrastructure.	Many

configuration	management	tools	even	provide	a	web	interface	(e.g.,	the
Chef	Console,	Puppet	Enterprise	Console)	for	the	master	server	to	make	it
easier	to	see	what’s	going	on.	Second,	some	master	servers	can	run
continuously	in	the	background,	and	enforce	your	configuration.	That
way,	if	someone	makes	a	manual	change	on	a	server,	the	master	server	can
revert	that	change	to	prevent	configuration	drift.

However,	having	to	run	a	master	server	has	some	serious	drawbacks:

Extra	infrastructure

You	have	to	deploy	an	extra	server,	or	even	a	cluster	of	extra	servers
(for	high	availability	and	scalability),	just	to	run	the	master.

Maintenance

You	have	to	maintain,	upgrade,	back	up,	monitor,	and	scale	the	master
server(s).

Security

You	have	to	provide	a	way	for	the	client	to	communicate	to	the	master
server(s)	and	a	way	for	the	master	server(s)	to	communicate	with	all
the	other	servers,	which	typically	means	opening	extra	ports	and
configuring	extra	authentication	systems,	all	of	which	increases	your
surface	area	to	attackers.

Chef,	Puppet,	and	SaltStack	do	have	varying	levels	of	support	for
masterless	modes	where	you	just	run	their	agent	software	on	each	of	your
servers,	typically	on	a	periodic	schedule	(e.g.,	a	cron	job	that	runs	every	5
minutes),	and	use	that	to	pull	down	the	latest	updates	from	version	control
(rather	than	from	a	master	server).	This	significantly	reduces	the	number
of	moving	parts,	but,	as	discussed	in	the	next	section,	this	still	leaves	a
number	of	unanswered	questions,	especially	about	how	to	provision	the
servers	and	install	the	agent	software	on	them	in	the	first	place.

Ansible,	CloudFormation,	Heat,	and	Terraform	are	all	masterless	by
default.	Or,	to	be	more	accurate,	some	of	them	may	rely	on	a	master
server,	but	it’s	already	part	of	the	infrastructure	you’re	using	and	not	an
extra	piece	you	have	to	manage.	For	example,	Terraform	communicates
with	cloud	providers	using	the	cloud	provider’s	APIs,	so	in	some	sense,
the	API	servers	are	master	servers,	except	they	don’t	require	any	extra
infrastructure	or	any	extra	authentication	mechanisms	(i.e.,	just	use	your
API	keys).	Ansible	works	by	connecting	directly	to	each	server	over	SSH,
so	again,	you	don’t	have	to	run	any	extra	infrastructure	or	manage	extra
authentication	mechanisms	(i.e.,	just	use	your	SSH	keys).

Agent	Versus	Agentless
Chef,	Puppet,	and	SaltStack	all	require	you	to	install	agent	software	(e.g.,
Chef	Client,	Puppet	Agent,	Salt	Minion)	on	each	server	you	want	to
configure.	The	agent	typically	runs	in	the	background	on	each	server	and
is	responsible	for	installing	the	latest	configuration	management	updates.

This	has	a	few	drawbacks:

Bootstrapping

How	do	you	provision	your	servers	and	install	the	agent	software	on
them	in	the	first	place?	Some	configuration	management	tools	kick	the
can	down	the	road,	assuming	some	external	process	will	take	care	of
this	for	them	(e.g.,	you	first	use	Terraform	to	deploy	a	bunch	of	servers
with	an	AMI	that	has	the	agent	already	installed);	other	configuration
management	tools	have	a	special	bootstrapping	process	where	you	run
one-off	commands	to	provision	the	servers	using	the	cloud	provider
APIs	and	install	the	agent	software	on	those	servers	over	SSH.

Maintenance

You	have	to	carefully	update	the	agent	software	on	a	periodic	basis,

being	careful	to	keep	it	in	sync	with	the	master	server	if	there	is	one.
You	also	have	to	monitor	the	agent	software	and	restart	it	if	it	crashes.

Security

If	the	agent	software	pulls	down	configuration	from	a	master	server	(or
some	other	server	if	you’re	not	using	a	master),	then	you	have	to	open
outbound	ports	on	every	server.	If	the	master	server	pushes
configuration	to	the	agent,	then	you	have	to	open	inbound	ports	on
every	server.	In	either	case,	you	have	to	figure	out	how	to	authenticate
the	agent	to	the	server	it’s	talking	to.	All	of	this	increases	your	surface
area	to	attackers.

Once	again,	Chef,	Puppet,	and	SaltStack	do	have	varying	levels	of	support
for	agentless	modes	(e.g.,	salt-ssh),	but	these	always	feel	like	they	were
tacked	on	as	an	afterthought	and	don’t	support	the	full	feature	set	of	the
configuration	management	tool.	That’s	why	in	the	wild,	the	default	or
idiomatic	configuration	for	Chef,	Puppet,	and	SaltStack	almost	always
includes	an	agent	and	usually	a	master	too,	as	shown	in	Figure	1-7.

Figure	1-7.	The	typical	architecture	for	Chef,	Puppet,	and	SaltStack	involves	many
moving	parts.	For	example,	the	default	setup	for	Chef	is	to	run	the	Chef	client	on	your
computer,	which	talks	to	a	Chef	master	server,	which	deploys	changes	by	talking	to

Chef	agents	running	on	all	your	other	servers.

All	of	these	extra	moving	parts	introduce	a	large	number	of	new	failure
modes	into	your	infrastructure.	Each	time	you	get	a	bug	report	at	3	a.m.,
you’ll	have	to	figure	out	if	it’s	a	bug	in	your	application	code,	or	your	IAC
code,	or	the	configuration	management	client,	or	the	master	server(s),	or
the	way	the	client	talks	to	the	master	server(s),	or	the	way	other	servers
talk	to	the	master	server(s),	or…

Ansible,	CloudFormation,	Heat,	and	Terraform	do	not	require	you	to
install	any	extra	agents.	Or,	to	be	more	accurate,	some	of	them	require
agents,	but	these	are	typically	already	installed	as	part	of	the	infrastructure
you’re	using.	For	example,	AWS,	Azure,	Google	Cloud,	and	all	other
cloud	providers	take	care	of	installing,	managing,	and	authenticating	agent
software	on	each	of	their	physical	servers.	As	a	user	of	Terraform,	you
don’t	have	to	worry	about	any	of	that:	you	just	issue	commands	and	the
cloud	provider’s	agents	execute	them	for	you	on	all	of	your	servers,	as
shown	in	Figure	1-8.	With	Ansible,	your	servers	need	to	run	the	SSH
Daemon,	which	is	common	to	run	on	most	servers	anyway.

Figure	1-8.	Terraform	uses	a	masterless,	agent-only	architecture.	All	you	need	to	run	is
the	Terraform	client	and	it	takes	care	of	the	rest	by	using	the	APIs	of	cloud	providers,

such	as	AWS.

Large	Community	Versus	Small	Community
Whenever	you	pick	a	technology,	you	are	also	picking	a	community.	In
many	cases,	the	ecosystem	around	the	project	can	have	a	bigger	impact	on
your	experience	than	the	inherent	quality	of	the	technology	itself.	The
community	determines	how	many	people	contribute	to	the	project,	how
many	plug-ins,	integrations,	and	extensions	are	available,	how	easy	it	is	to
find	help	online	(e.g.,	blog	posts,	questions	on	StackOverflow),	and	how
easy	it	is	to	hire	someone	to	help	you	(e.g.,	an	employee,	consultant,	or
support	company).

It’s	hard	to	do	an	accurate	comparison	between	communities,	but	you	can
spot	some	trends	by	searching	online.	Table	1-1	shows	a	comparison	of
popular	IAC	tools,	with	data	I	gathered	during	May	2019,	including
whether	the	IAC	tool	is	open	source	or	closed	source,	what	cloud
providers	it	supports,	the	total	number	of	contributors	and	stars	on	GitHub,

how	many	commits	and	active	issues	there	were	over	a	one-month	period
from	mid	April	to	mid	May,	how	many	open	source	libraries	are	available
for	the	tool,	the	number	of	questions	listed	for	that	tool	on	StackOverflow,
and	the	number	of	jobs	that	mention	the	tool	on	Indeed.com.

Table	1-1.	A	comparison	of	IAC	communities

Source Cloud Contributors Stars
Commits
(1
month)

Bugs
(1
month)

Chef Open All 562 5,794 435 86

Puppet Open All 515 5,299 94 314

Ansible Open All 4,386 37,161 506 523

SaltStack Open All 2,237 9,901 608 441

CloudFormation Closed AWS ? ? ? ?

Heat Open All 361 349 12 600

Terraform Open All 1,261 16,837 173 204

a
	This	is	the	number	of	cookbooks	in	the	Chef	Supermarket.

b
	To	avoid	false	positives	for	the	term	“chef”,	I	searched	for	“chef	devops”.

c
	Based	on	the	Puppet	Labs	JIRA	account.

d
	This	is	the	number	of	modules	in	Puppet	Forge.

e
	To	avoid	false	positives	for	the	term	“puppet”,	I	searched	for	“puppet	devops”.

f
	This	is	the	number	of	reusable	roles	in	Ansible	Galaxy.

g
	This	is	the	number	of	formulas	in	the	Salt	Stack	Formulas	GitHub	account.

h
	This	is	the	number	of	templates	in	the	awslabs	GitHub	account.

8

c

i

https://supermarket.chef.io/cookbooks
https://tickets.puppetlabs.com/secure/Dashboard.jspa
https://forge.puppet.com
https://galaxy.ansible.com
https://github.com/saltstack-formulas
https://github.com/awslabs

i
	Based	on	the	OpenStack	bug	tracker.

j
	I	could	not	find	any	collections	of	community	Heat	templates.

k
	To	avoid	false	positives	for	the	term	“heat”,	I	searched	for	“openstack”.

l
	This	is	the	number	of	modules	in	the	Terraform	Registry.

Obviously,	this	is	not	a	perfect	apples-to-apples	comparison.	For	example,
some	of	the	tools	have	more	than	one	repository,	and	some	use	other
methods	for	bug	tracking	and	questions;	searching	for	jobs	with	common
words	like	“chef”	or	“puppet”	is	tricky;	Terraform	split	the	provider	code
out	into	separate	repos	in	2017,	so	measuring	activity	on	solely	the	core
repo	dramatically	understates	activity	(by	at	least	10x);	and	so	on.

That	said,	a	few	trends	are	obvious.	First,	all	of	the	IAC	tools	in	this
comparison	are	open	source	and	work	with	many	cloud	providers,	except
for	CloudFormation,	which	is	closed	source,	and	only	works	with	AWS.
Second,	Ansible	leads	the	pack	in	terms	of	popularity,	with	Salt	and
Terraform	not	too	far	behind.

Another	interesting	trend	to	note	is	how	these	numbers	have	changed	since
the	1st	edition	of	the	book.	Table	1-2	shows	the	percent	change	in	each	of
the	numbers	from	the	values	I	gathered	back	in	September,	2016.

Table	1-2.	How	the	IAC	communities	have	changed	between
September,	2016	and	May,	2019

https://bugs.launchpad.net/openstack
https://registry.terraform.io/

Source Cloud Contributors Stars
Commits
(1
month)

Issues
(1
month)

Chef Open All +18% +31% +139% +48%

Puppet Open All +19% +27% +19% +42%

Ansible Open All +195% +97% +49% +66%

SaltStack Open All +40% +44% +79% +27%

CloudFormation Closed AWS ? ? ? ?

Heat Open All +28% +23% -85% +1,566%

Terraform Open All +93% +194% -61% -58%

Again,	the	data	here	is	not	perfect,	but	it’s	good	enough	to	spot	a	clear
trend:	Terraform	and	Ansible	are	experiencing	explosive	growth.	The
increase	in	the	number	of	contributors,	stars,	open	source	libraries,
StackOverflow	posts,	and	jobs	is	through	the	roof. 	Both	of	these	tools
have	large,	active	communities	today,	and	judging	by	these	trends,	it’s
likely	that	they	will	become	even	larger	in	the	future.

Mature	Versus	Cutting	Edge
Another	key	factor	to	consider	when	picking	any	technology	is	maturity.
Table	1-3	shows	the	initial	release	dates	and	current	version	number	(as	of
May,	2019)	for	of	each	of	the	IAC	tools.

Table	1-3.	A	comparison	of	IAC	maturity	as	of	May,	2019

Initial	release Current	version

Puppet 2005 6.0.9

9

Chef 2009 12.19.31

CloudFormation 2011 2010-09-09

SaltStack 2011 2019.2.0

Ansible 2012 2.5.5

Heat 2012 12.0.0

Terraform 2014 0.12.0

Again,	this	is	not	an	apples-to-apples	comparison,	since	different	tools
have	different	versioning	schemes,	but	some	trends	are	clear.	Terraform	is,
by	far,	the	youngest	IAC	tool	in	this	comparison.	It’s	still	pre	1.0.0,	so
there	is	no	guarantee	of	a	stable	or	backward	compatible	API,	and	bugs	are
relatively	common	(although	most	of	them	are	minor).	This	is	Terraform’s
biggest	weakness:	although	it	has	gotten	extremely	popular	in	a	short	time,
the	price	you	pay	for	using	this	new,	cutting-edge	tool	is	that	it	is	not	as
mature	as	some	of	the	other	IAC	options.

Conclusion
Putting	it	all	together,	Table	1-4	shows	how	the	most	popular	IAC	tools
stack	up.	Note	that	this	table	shows	the	default	or	most	common	way	the
various	IAC	tools	are	used,	though	as	discussed	earlier	in	this	chapter,
these	IAC	tools	are	flexible	enough	to	be	used	in	other	configurations,	too
(e.g.,	Chef	can	be	used	without	a	master,	Salt	can	be	used	to	do	immutable
infrastructure).

Table	1-4.	A	comparison	of	the	most	common	way	to	use	the	most

popular	IAC	tools

Source Cloud Type Infrastructure Language

Chef Open All Config
Mgmt

Mutable Procedural

Puppet Open All Config
Mgmt

Mutable Declarative

Ansible Open All Config
Mgmt

Mutable Procedural

SaltStack Open All Config
Mgmt

Mutable Declarative

CloudFormation Closed AWS Provisioning Immutable Declarative

Heat Open All Provisioning Immutable Declarative

Terraform Open All Provisioning Immutable Declarative

At	Gruntwork,	what	we	wanted	was	an	open	source,	cloud-agnostic
provisioning	tool	that	supported	immutable	infrastructure,	a	declarative
language,	a	masterless	and	agentless	architecture,	and	had	a	large
community	and	a	mature	codebase.	Table	1-4	shows	that	Terraform,	while
not	perfect,	comes	the	closest	to	meeting	all	of	our	criteria.

Does	Terraform	fit	your	criteria,	too?	If	so,	then	head	over	to	Chapter	2	to
learn	how	to	use	it.

1
	From	The	DevOps	Handbook:	How	to	Create	World-Class	Agility,	Reliability,	&
Security	in	Technology	Organizations	(IT	Revolution	Press)	by	Gene	Kim,	Jez
Humble,	Patrick	Debois,	and	John	Willis.

2
	On	most	modern	operating	systems,	code	runs	in	one	of	two	“spaces”:	kernel
space	and	user	space.	Code	running	in	kernel	space	has	direct,	unrestricted	access
to	all	of	the	hardware.	There	are	no	security	restrictions	(i.e.,	you	can	execute	any
CPU	instruction,	access	any	part	of	the	hard	drive,	write	to	any	address	in

http://itrevolution.com/devops-handbook

memory)	or	safety	restrictions	(e.g.,	a	crash	in	kernel	space	will	typically	crash
the	entire	computer),	so	kernel	space	is	generally	reserved	for	the	lowest-level,
most	trusted	functions	of	the	operating	system	(typically	called	the	kernel).	Code
running	in	user	space	does	not	have	any	direct	access	to	the	hardware	and	must
use	APIs	exposed	by	the	operating	system	kernel	instead.	These	APIs	can	enforce
security	restrictions	(e.g.,	user	permissions)	and	safety	(e.g.,	a	crash	in	a	user
space	app	typically	only	affects	that	app),	so	just	about	all	application	code	runs
in	user	space.

3
	As	a	general	rule,	containers	provide	isolation	that’s	good	enough	to	run	your
own	code,	but	if	you	need	to	run	third-party	code	(e.g.,	you’re	building	your	own
cloud	provider)	that	may	actively	be	performing	malicious	actions,	you’ll	want
the	increased	isolation	guarantees	of	a	VM.

4
	As	an	alternative	to	Bash,	Packer	also	allows	you	to	configure	your	images	using
configuration	management	tools	such	as	Ansible	or	Chef.

5
	Check	out	the	Gruntwork	Infrastructure	as	Code	Library	for	an	example.

6
	Docker	and	Packer	are	not	part	of	the	comparison	because	they	can	be	used	with
any	of	the	configuration	management	or	provisioning	tools.

7
	The	distinction	between	configuration	management	and	provisioning	has	become
even	less	clear	cut	in	recent	months,	as	some	of	the	major	configuration
management	tools	have	started	to	add	better	support	for	provisioning,	such	as
Chef	Provisioning	and	the	Puppet	AWS	Module.

8
	Most	of	this	data,	including	the	number	of	contributors,	stars,	changes,	and	issues,
comes	from	the	open	source	repositories	and	bug	trackers	(mostly	GitHub)	for
each	tool.	Since	CloudFormation	is	closed	source,	some	of	this	information	is	not
available.

9
	the	decline	in	Terraform’s	commits	and	issues	is	solely	due	to	the	fact	that	I’m
only	measuring	the	core	Terraform	repo,	whereas	in	2017,	all	the	provider	code
was	extracted	into	separate	repos,	so	the	vast	amount	of	activity	across	the	more
than	100	provider	repos	is	not	being	counted.

https://gruntwork.io/infrastructure-as-code-library/
https://docs.chef.io/provisioning.html
https://github.com/puppetlabs/puppetlabs-aws

Chapter	2.	Getting	Started	with
Terraform

In	this	chapter,	you’re	going	to	learn	the	basics	of	how	to	use	Terraform.
It’s	an	easy	tool	to	learn,	so	in	the	span	of	about	30	pages,	you’ll	go	from
running	your	first	Terraform	commands	all	the	way	up	to	using	Terraform
to	deploy	a	cluster	of	servers	with	a	load	balancer	that	distributes	traffic
across	them.	This	infrastructure	is	a	good	starting	point	for	running
scalable,	highly	available	web	services	and	microservices.	In	subsequent
chapters,	you’ll	evolve	this	example	even	further.

Terraform	can	provision	infrastructure	across	public	cloud	providers	such
as	Amazon	Web	Services	(AWS),	Azure,	Google	Cloud,	and
DigitalOcean,	as	well	as	private	cloud	and	virtualization	platforms	such	as
OpenStack	and	VMWare.	For	just	about	all	of	the	code	examples	in	this
chapter	and	the	rest	of	the	book,	you	are	going	to	use	AWS.	AWS	is	a
good	choice	for	learning	Terraform	because:

AWS	is	the	most	popular	cloud	infrastructure	provider,	by	far.	It
has	a	45%	share	in	the	cloud	infrastructure	market,	which	is	more
than	the	next	three	biggest	competitors	(Microsoft,	Google,	and
IBM)	combined.

AWS	provides	a	huge	range	of	reliable	and	scalable	cloud	hosting
services,	including:	Elastic	Compute	Cloud	(EC2),	which	you	can
use	to	deploy	virtual	servers;	Auto	Scaling	Groups	(ASGs),	which
make	it	easier	to	manage	a	cluster	of	virtual	servers;	and	Elastic
Load	Balancers	(ELBs),	which	you	can	use	to	distribute	traffic
across	the	cluster	of	virtual	servers.1

http://bit.ly/2kWCuCm

AWS	offers	a	generous	Free	Tier	that	should	allow	you	to	run	all
of	these	examples	for	free.	If	you	already	used	up	your	free	tier
credits,	the	examples	in	this	book	should	still	cost	you	no	more
than	a	few	dollars.

If	you’ve	never	used	AWS	or	Terraform	before,	don’t	worry,	as	this
tutorial	is	designed	for	novices	to	both	technologies.	I’ll	walk	you	through
the	following	steps:

Set	up	your	AWS	account

Install	Terraform

Deploy	a	single	server

Deploy	a	single	web	server

Deploy	a	configurable	web	server

Deploy	a	cluster	of	web	servers

Deploy	a	load	balancer

Clean	up

EXAMPLE	CODE
As	a	reminder,	all	of	the	code	examples	in	the	book	can	be	found	at	the
following	URL:	https://github.com/brikis98/terraform-up-and-running-
code.

Set	Up	Your	AWS	Account
If	you	don’t	already	have	an	AWS	account,	head	over	to
https://aws.amazon.com	and	sign	up.	When	you	first	register	for	AWS,
you	initially	sign	in	as	root	user.	This	user	account	has	access	permissions

https://aws.amazon.com/free/
https://github.com/brikis98/terraform-up-and-running-code
https://aws.amazon.com

to	do	absolutely	anything	in	the	account,	so	from	a	security	perspective,
it’s	not	a	good	idea	to	use	the	root	user	on	a	day-to-day	basis.	In	fact,	the
only	thing	you	should	use	the	root	user	for	is	to	create	other	user	accounts
with	more	limited	permissions,	and	switch	to	one	of	those	accounts
immediately.

To	create	a	more	limited	user	account,	you	will	need	to	use	the	Identity
and	Access	Management	(IAM)	service.	IAM	is	where	you	manage	user
accounts	as	well	as	the	permissions	for	each	user.	To	create	a	new	IAM
user,	head	over	to	the	IAM	Console,	click	“Users,”	and	click	the	blue
“Create	New	Users”	button.	Enter	a	name	for	the	user	and	make	sure
“Generate	an	access	key	for	each	user”	is	checked,	as	shown	in	Figure	2-1.

Figure	2-1.	Create	a	new	IAM	user

Click	the	“Create”	button	and	AWS	will	show	you	the	security	credentials
for	that	user,	which	consist	of	an	Access	Key	ID	and	a	Secret	Access	Key,
as	shown	in	Figure	2-2.	You	must	save	these	immediately,	as	they	will
never	be	shown	again.	I	recommend	storing	them	somewhere	secure	(e.g.,

2

https://console.aws.amazon.com/iam/

a	password	manager	such	as	1Password,	LastPass,	or	OS	X	Keychain)	so
you	can	use	them	a	little	later	in	this	tutorial.

Figure	2-2.	Store	your	AWS	credentials	somewhere	secure.	Never	share	them	with
anyone.	Don’t	worry,	the	ones	in	the	screenshot	are	fake.

Once	you’ve	saved	your	credentials,	click	the	“Close”	button	(twice),	and
you’ll	be	taken	to	the	list	of	IAM	users.	Click	the	user	you	just	created	and
select	the	“Permissions”	tab.	By	default,	new	IAM	users	have	no
permissions	whatsoever,	and	therefore	cannot	do	anything	in	an	AWS
account.

To	give	an	IAM	user	permissions	to	do	something,	you	need	to	associate
one	or	more	IAM	Policies	with	that	user’s	account.	An	IAM	Policy	is	a
JSON	document	that	defines	what	a	user	is	or	isn’t	allowed	to	do.	You	can
create	your	own	IAM	Policies	or	use	some	of	the	predefined	IAM
Policies,	which	are	known	as	Managed	Policies.

To	run	the	examples	in	this	book,	you	will	need	to	add	the	following
Managed	Policies	to	your	IAM	user,	as	shown	in	Figure	2-3:

3

1.	 AmazonEC2FullAccess:	required	for	this	chapter.

2.	 AmazonS3FullAccess:	required	for	Chapter	3.

3.	 AmazonDynamoDBFullAccess:	required	for	Chapter	3.

4.	 AmazonRDSFullAccess:	required	for	Chapter	3.

5.	 CloudWatchFullAccess:	required	for	Chapter	5.

6.	 IAMFullAccess:	required	for	Chapter	5.

Figure	2-3.	Add	several	Managed	IAM	Policies	to	your	new	IAM	user

A	NOTE	ON	DEFAULT	VPCS
Please	note	that	if	you	are	using	an	existing	AWS	account,	it	must	have	a
Default	VPC	in	it.	A	VPC,	or	Virtual	Private	Cloud,	is	an	isolated	area	of
your	AWS	account	that	has	its	own	virtual	network	and	IP	address	space.
Just	about	every	AWS	resource	deploys	into	a	VPC.	If	you	don’t	explicitly
specify	a	VPC,	the	resource	will	be	deployed	into	the	Default	VPC,	which	is
part	of	every	new	AWS	account.	All	the	examples	in	this	book	rely	on	this
Default	VPC,	so	if	for	some	reason	you	deleted	the	one	in	your	account,
either	use	a	different	region	(each	region	has	its	own	Default	VPC)	or	create
a	new	Default	VPC	using	the	AWS	Web	Console.	Otherwise,	you’ll	need	to
update	almost	every	example	to	include	a	vpc_id	or	subnet_id

https://console.aws.amazon.com/vpc/home

parameter	pointing	to	a	custom	VPC.

Install	Terraform
You	can	download	Terraform	from	the	Terraform	homepage.	Click	the
download	link,	select	the	appropriate	package	for	your	operating	system,
download	the	zip	archive,	and	unzip	it	into	the	directory	where	you	want
Terraform	to	be	installed.	The	archive	will	extract	a	single	binary	called
terraform,	which	you’ll	want	to	add	to	your	PATH	environment
variable.

To	check	if	things	are	working,	run	the	terraform	command,	and	you
should	see	the	usage	instructions:

$	terraform

Usage:	terraform	[-version]	[-help]	<command>	[args]

Common	commands:

				apply														Builds	or	changes	infrastructure

				console												Interactive	console	for	Terraform	

interpolations

				destroy												Destroy	Terraform-managed	

infrastructure

				env																Workspace	management

				fmt																Rewrites	config	files	to	

canonical	format

				(...)

In	order	for	Terraform	to	be	able	to	make	changes	in	your	AWS	account,
you	will	need	to	set	the	AWS	credentials	for	the	IAM	user	you	created
earlier	as	the	environment	variables	AWS_ACCESS_KEY_ID	and
AWS_SECRET_ACCESS_KEY.	For	example,	here	is	how	you	can	do	it	in

https://www.terraform.io

a	Unix/Linux/OS	X	terminal:

$	export	AWS_ACCESS_KEY_ID=(your	access	key	id)

$	export	AWS_SECRET_ACCESS_KEY=(your	secret	access	key)

Note	that	these	environment	variables	will	only	apply	to	the	current	shell,
so	if	you	reboot	your	computer	or	open	a	new	terminal	window,	you’ll
have	to	export	these	variables	again.

AUTHENTICATION	OPTIONS
In	addition	to	environment	variables,	Terraform	supports	the	same
authentication	mechanisms	as	all	AWS	CLI	and	SDK	tools.	Therefore,	it’ll
also	be	able	to	use	credentials	in	$HOME/.aws/credentials,	which	are
automatically	generated	if	you	run	the	configure	command	on	the	AWS
CLI,	or	IAM	Roles,	which	you	can	add	to	almost	any	resource	in	AWS.	For
more	info,	see	A	Comprehensive	Guide	to	Authenticating	to	AWS	on	the
Command	Line.

Deploy	a	Single	Server
Terraform	code	is	written	in	the	HashiCorp	Configuration	Language
(HCL)	in	files	with	the	extension	.tf. 	It	is	a	declarative	language,	so	your
goal	is	to	describe	the	infrastructure	you	want,	and	Terraform	will	figure
out	how	to	create	it.	Terraform	can	create	infrastructure	across	a	wide
variety	of	platforms,	or	what	it	calls	providers,	including	AWS,	Azure,
Google	Cloud,	DigitalOcean,	and	many	others.

You	can	write	Terraform	code	in	just	about	any	text	editor.	If	you	search
around,	you	can	find	Terraform	syntax	highlighting	support	for	most
editors	(note,	you	may	have	to	search	for	the	word	“HCL”	instead	of

4

https://blog.gruntwork.io/a-comprehensive-guide-to-authenticating-to-aws-on-the-command-line-63656a686799

“Terraform”),	including	vim,	emacs,	Sublime	Text,	Atom,	Visual	Studio
Code,	and	IntelliJ	(the	latter	even	has	support	for	refactoring,	find	usages,
and	go	to	declaration).

The	first	step	to	using	Terraform	is	typically	to	configure	the	provider(s)
you	want	to	use.	Create	an	empty	folder	and	put	a	file	in	it	called	main.tf
with	the	following	contents:

provider	"aws"	{

		region	=	"us-east-2"

}

This	tells	Terraform	that	you	are	going	to	be	using	AWS	as	your	provider
and	that	you	wish	to	deploy	your	infrastructure	into	the	us-east-2
region.	AWS	has	data	centers	all	over	the	world,	grouped	into	regions	and
availability	zones.	An	AWS	region	is	a	separate	geographic	area,	such	as
us-east-2	(Ohio),	eu-west-1	(Ireland),	and	ap-southeast-2
(Sydney).	Within	each	region,	there	are	multiple	isolated	data	centers
known	as	availability	zones,	such	as	us-east-2a,	us-east-2b,	and
so	on.

For	each	type	of	provider,	there	are	many	different	kinds	of	resources	you
can	create,	such	as	servers,	databases,	and	load	balancers.	For	example,	to
deploy	a	single	server	in	AWS,	known	as	an	EC2	Instance,	you	can
add	the	aws_instance	resource	to	main.tf:

resource	"aws_instance"	"example"	{

		ami											=	"ami-0c55b159cbfafe1f0"

		instance_type	=	"t2.micro"

}

5

The	general	syntax	for	a	Terraform	resource	is:

resource	"<PROVIDER>_<TYPE>"	"<NAME>"	{

		[CONFIG	...]

}

where	PROVIDER	is	the	name	of	a	provider	(e.g.,	aws),	TYPE	is	the	type
of	resources	to	create	in	that	provider	(e.g.,	instance),	NAME	is	an
identifier	you	can	use	throughout	the	Terraform	code	to	refer	to	this
resource	(e.g.,	example),	and	CONFIG	consists	of	one	or	more
arguments	that	are	specific	to	that	resource	(e.g.,	ami	=	"ami-
0c55b159cbfafe1f0").	For	the	aws_instance	resource,	there	are
many	different	arguments,	but	for	now,	you	only	need	to	set	the	following
ones:

ami

The	Amazon	Machine	Image	(AMI)	to	run	on	the	EC2	Instance.	You
can	find	free	and	paid	AMIs	in	the	AWS	Marketplace	or	create	your
own	using	tools	such	as	Packer	(see	“Server	Templating	Tools”	for	a
discussion	of	machine	images	and	server	templating).	The	preceding
code	example	sets	the	ami	parameter	to	the	ID	of	an	Ubuntu	18.04
AMI	in	us-east-2.	This	AMI	is	free	to	use.

instance_type

The	type	of	EC2	Instance	to	run.	Each	type	of	EC2	Instance	provides	a
different	amount	CPU,	memory,	disk	space,	and	networking	capacity.
The	EC2	Instance	Types	page	lists	all	the	available	options.	The
preceding	example	uses	t2.micro,	which	has	one	virtual	CPU,	1GB
of	memory,	and	is	part	of	the	AWS	free	tier.

USE	THE	DOCS!

https://aws.amazon.com/marketplace/
https://aws.amazon.com/ec2/instance-types/

Terraform	supports	dozens	of	providers,	each	of	which	supports	dozens	of
resources,	and	each	resource	has	dozens	of	arguments.	There	is	no	way	to
remember	them	all.	When	you’re	writing	Terraform	code,	you	should	be
regularly	referring	to	the	Terraform	documentation	to	look	up	what
resources	are	available	and	how	to	use	each	one.	For	example,	the
documentation	for	the	aws_instance	resource	can	be	found	here:
https://www.terraform.io/docs/providers/aws/r/instance.html.	I’ve	been
using	Terraform	for	years	and	I	still	refer	to	these	docs	multiple	times	per
day!

In	a	terminal,	go	into	the	folder	where	you	created	main.tf,	and	run	the
terraform	init	command:

$	terraform	init

Initializing	the	backend...

Initializing	provider	plugins...

-	Checking	for	available	provider	plugins...

-	Downloading	plugin	for	provider	"aws"	(terraform-

providers/aws)	2.10.0...

The	following	providers	do	not	have	any	version	

constraints	in	configuration,

so	the	latest	version	was	installed.

To	prevent	automatic	upgrades	to	new	major	versions	that	

may	contain	breaking

changes,	it	is	recommended	to	add	version	=	"..."	

constraints	to	the

corresponding	provider	blocks	in	configuration,	with	the	

constraint	strings

suggested	below.

*	provider.aws:	version	=	"~>	2.10"

Terraform	has	been	successfully	initialized!

https://www.terraform.io/docs/providers/aws/r/instance.html

The	terraform	binary	contains	the	basic	functionality	for	Terraform,
but	it	does	not	come	with	the	code	for	any	of	the	providers	(e.g.,	the	AWS
provider,	Azure	provider,	GCP	provider,	etc),	so	when	first	starting	to	use
a	Terraform	module,	you	need	to	run	terraform	init	to	tell
Terraform	to	scan	the	code,	figure	out	what	providers	you’re	using,	and
download	the	code	for	them.	You’ll	see	a	few	other	uses	for	the	init
command	in	later	chapters.

Now	that	you	have	the	provider	code	downloaded,	run	the	terraform
plan	command	(the	log	output	below	is	truncated	for	readability):

$	terraform	plan

(...)

Terraform	will	perform	the	following	actions:

		#	aws_instance.example	will	be	created

		+	resource	"aws_instance"	"example"	{

						+	ami																										=	"ami-

0c55b159cbfafe1f0"

						+	arn																										=	(known	after	

apply)

						+	associate_public_ip_address		=	(known	after	

apply)

						+	availability_zone												=	(known	after	

apply)

						+	cpu_core_count															=	(known	after	

apply)

						+	cpu_threads_per_core									=	(known	after	

apply)

						+	get_password_data												=	false

						+	host_id																						=	(known	after	

apply)

						+	id																											=	(known	after	

apply)

						+	instance_state															=	(known	after	

apply)

						+	instance_type																=	"t2.micro"

						+	ipv6_address_count											=	(known	after	

apply)

						+	ipv6_addresses															=	(known	after	

apply)

						+	key_name																					=	(known	after	

apply)

						(...)

		}

Plan:	1	to	add,	0	to	change,	0	to	destroy.

The	plan	command	lets	you	see	what	Terraform	will	do	before	actually
making	any	changes.	This	is	a	great	way	to	sanity	check	your	code	before
unleashing	it	onto	the	world.	The	output	of	the	plan	command	is	similar
to	the	output	of	the	diff	command	that	is	part	of	Unix,	Linux,	and	git:
anything	with	a	plus	sign	(+)	will	be	created,	anything	with	a	minus	sign
(–)	will	be	deleted,	and	anything	with	a	tilde	sign	(~)	will	be	modified	in
place.	In	the	preceding	output,	you	can	see	that	Terraform	is	planning	on
creating	a	single	EC2	Instance	and	nothing	else,	which	is	exactly	what	you
want.

To	actually	create	the	instance,	run	the	terraform	apply	command:

$	terraform	apply

(...)

Terraform	will	perform	the	following	actions:

		#	aws_instance.example	will	be	created

		+	resource	"aws_instance"	"example"	{

						+	ami																										=	"ami-

0c55b159cbfafe1f0"

						+	arn																										=	(known	after	

apply)

						+	associate_public_ip_address		=	(known	after	

apply)

						+	availability_zone												=	(known	after	

apply)

						+	cpu_core_count															=	(known	after	

apply)

						+	cpu_threads_per_core									=	(known	after	

apply)

						+	get_password_data												=	false

						+	host_id																						=	(known	after	

apply)

						+	id																											=	(known	after	

apply)

						+	instance_state															=	(known	after	

apply)

						+	instance_type																=	"t2.micro"

						+	ipv6_address_count											=	(known	after	

apply)

						+	ipv6_addresses															=	(known	after	

apply)

						+	key_name																					=	(known	after	

apply)

						(...)

		}

Plan:	1	to	add,	0	to	change,	0	to	destroy.

Do	you	want	to	perform	these	actions?

		Terraform	will	perform	the	actions	described	above.

		Only	'yes'	will	be	accepted	to	approve.

		Enter	a	value:

You’ll	notice	that	the	apply	command	shows	you	the	same	plan	output
and	asks	you	to	confirm	if	you	actually	want	to	proceed	with	this	plan.	So
while	plan	is	available	as	a	separate	command,	it’s	mainly	useful	for
quick	sanity	checks	and	during	code	reviews,	and	most	of	the	time	you’ll
run	apply	directly	and	review	the	plan	output	it	shows	you.

Type	in	“yes”	and	hit	enter	to	deploy	the	EC2	Instance:

Do	you	want	to	perform	these	actions?

		Terraform	will	perform	the	actions	described	above.

		Only	'yes'	will	be	accepted	to	approve.

		Enter	a	value:	yes

aws_instance.example:	Creating...

aws_instance.example:	Still	creating...	[10s	elapsed]

aws_instance.example:	Still	creating...	[20s	elapsed]

aws_instance.example:	Still	creating...	[30s	elapsed]

aws_instance.example:	Creation	complete	after	38s	[id=i-

07e2a3e006d785906]

Apply	complete!	Resources:	1	added,	0	changed,	0	

destroyed.

Congrats,	you’ve	just	deployed	a	server	with	Terraform!	To	verify	this,
head	over	to	the	EC2	console,	and	you	should	see	something	similar	to
Figure	2-4.

Figure	2-4.	A	single	EC2	Instance

Sure	enough	the	server	is	there,	though	admittedly,	this	isn’t	the	most
exciting	example.	Let’s	make	it	a	bit	more	interesting.	First,	notice	that	the
EC2	Instance	doesn’t	have	a	name.	To	add	one,	you	can	add	tags	to	the

https://console.aws.amazon.com/ec2/v2/home

aws_instance	resource:

resource	"aws_instance"	"example"	{

		ami											=	"ami-0c55b159cbfafe1f0"

		instance_type	=	"t2.micro"

		tags	=	{

				Name	=	"terraform-example"

		}

}

Run	terraform	apply	again	to	see	what	this	would	do:

$	terraform	apply

aws_instance.example:	Refreshing	state...

(...)

Terraform	will	perform	the	following	actions:

		#	aws_instance.example	will	be	updated	in-place

		~	resource	"aws_instance"	"example"	{

								ami																										=	"ami-

0c55b159cbfafe1f0"

								availability_zone												=	"us-east-2b"

								instance_state															=	"running"

								(...)

						+	tags																									=	{

										+	"Name"	=	"terraform-example"

								}

								(...)

				}

Plan:	0	to	add,	1	to	change,	0	to	destroy.

Do	you	want	to	perform	these	actions?

		Terraform	will	perform	the	actions	described	above.

		Only	'yes'	will	be	accepted	to	approve.

		Enter	a	value:

Terraform	keeps	track	of	all	the	resources	it	already	created	for	this	set	of
configuration	files,	so	it	knows	your	EC2	Instance	already	exists	(notice
Terraform	says	“Refreshing	state…”	when	you	run	the	plan	command),
and	it	can	show	you	a	diff	between	what’s	currently	deployed	and	what’s
in	your	Terraform	code	(this	is	one	of	the	advantages	of	using	a
declarative	language	over	a	procedural	one,	as	discussed	in	“How
Terraform	Compares	to	Other	Infrastructure	as	Code	Tools”).	The
preceding	diff	shows	that	Terraform	wants	to	create	a	single	tag	called
“Name,”	which	is	exactly	what	you	need,	so	type	in	“yes”	and	hit	enter.

When	you	refresh	your	EC2	console,	you’ll	see	something	similar	to
Figure	2-5.

Figure	2-5.	The	EC2	Instance	now	has	a	name	tag

Now	that	you	have	some	working	Terraform	code,	you	may	want	to	store
it	in	version	control.	This	allows	you	to	share	your	code	with	other	team
members,	track	the	history	of	all	infrastructure	changes,	and	use	the
commit	log	for	debugging.	For	example,	here	is	how	you	can	create	a

local	Git	repository	and	use	it	to	store	your	Terraform	configuration	file:

git	init

git	add	main.tf

git	commit	-m	"Initial	commit"

You	should	also	create	a	file	called	.gitignore	that	tells	Git	to	ignore
certain	types	of	files	so	you	don’t	accidentally	check	them	in:

.terraform

*.tfstate

*.tfstate.backup

The	preceding	.gitignore	file	tells	Git	to	ignore	the	.terraform	folder,
which	Terraform	uses	as	a	temporary	scratch	directory,	as	well	as	*.tfstate
files,	which	Terraform	uses	to	store	state	(in	Chapter	3,	you’ll	see	why
state	files	shouldn’t	be	checked	in).	You	should	commit	the	.gitignore	file,
too:

git	add	.gitignore

git	commit	-m	"Add	a	.gitignore	file"

To	share	this	code	with	your	teammates,	you’ll	want	to	create	a	shared	Git
repository	that	you	can	all	access.	One	way	to	do	this	is	to	use	GitHub.
Head	over	to	github.com,	create	an	account	if	you	don’t	have	one	already,
and	create	a	new	repository.	Configure	your	local	Git	repository	to	use	the
new	GitHub	repository	as	a	remote	endpoint	named	origin	as	follows:

git	remote	add	origin	git@github.com:

<YOUR_USERNAME>/<YOUR_REPO_NAME>.git

Now,	whenever	you	want	to	share	your	commits	with	your	teammates,

https://github.com

you	can	push	them	to	origin:

git	push	origin	master

And	whenever	you	want	to	see	changes	your	teammates	have	made,	you
can	pull	them	from	origin:

git	pull	origin	master

As	you	go	through	the	rest	of	this	book,	and	as	you	use	Terraform	in
general,	make	sure	to	regularly	git	commit	and	git	push	your
changes.	This	way,	you’ll	not	only	be	able	to	collaborate	with	team
members	on	this	code,	but	all	your	infrastructure	changes	will	also	be
captured	in	the	commit	log,	which	is	very	handy	for	debugging.

Deploy	a	Single	Web	Server
The	next	step	is	to	run	a	web	server	on	this	Instance.	The	goal	is	to	deploy
the	simplest	web	architecture	possible:	a	single	web	server	that	can
respond	to	HTTP	requests,	as	shown	in	Figure	2-6.

Figure	2-6.	Start	with	a	simple	architecture:	a	single	web	server	running	in	AWS	that
responds	to	HTTP	requests

In	a	real-world	use	case,	you’d	probably	build	the	web	server	using	a	web
framework	like	Ruby	on	Rails	or	Django,	but	to	keep	this	example	simple,
let’s	run	a	dirt-simple	web	server	that	always	returns	the	text	“Hello,
World”:

#!/bin/bash

echo	"Hello,	World"	>	index.html

nohup	busybox	httpd	-f	-p	8080	&

This	is	a	Bash	script	that	writes	the	text	“Hello,	World”	into	index.html
and	runs	a	tool	called	busybox	(which	is	installed	by	default	on	Ubuntu)	to
fire	up	a	web	server	on	port	8080	to	serve	that	file.	I	wrapped	the
busybox	command	with	nohup	and	&	so	that	the	web	server	runs
permanently	in	the	background,	while	the	Bash	script	itself	can	exit.

6

https://busybox.net/

PORT	NUMBERS
The	reason	this	example	uses	port	8080,	rather	than	the	default	HTTP	port
80,	is	that	listening	on	any	port	less	than	1024	requires	root	user	privileges.
This	is	a	security	risk,	because	any	attacker	who	manages	to	compromise
your	server	would	get	root	privileges,	too.

Therefore,	it’s	a	best	practice	to	run	your	web	server	with	a	non-root	user
that	has	limited	permissions.	That	means	you	have	to	listen	on	higher-
numbered	ports,	but	as	you’ll	see	later	in	this	chapter,	you	can	configure	a
load	balancer	to	listen	on	port	80	and	route	traffic	to	the	high-numbered
ports	on	your	server(s).

How	do	you	get	the	EC2	Instance	to	run	this	script?	Normally,	as
discussed	in	“Server	Templating	Tools”,	you	would	use	a	tool	like	Packer
to	create	a	custom	AMI	that	has	the	web	server	installed	on	it.	Since	the
dummy	web	server	in	this	example	is	just	a	one-liner	that	uses	busybox,
you	can	use	a	plain	Ubuntu	18.04	AMI,	and	run	the	“Hello,	World”	script
as	part	of	the	EC2	Instance’s	User	Data	configuration,	which	AWS	will
execute	when	the	Instance	is	booting:

resource	"aws_instance"	"example"	{

		ami																				=	"ami-0c55b159cbfafe1f0"

		instance_type										=	"t2.micro"

		user_data	=	<<-EOF

														#!/bin/bash

														echo	"Hello,	World"	>	index.html

														nohup	busybox	httpd	-f	-p	8080	&

														EOF

		tags	=	{

				Name	=	"terraform-example"

		}

}

The	<<-EOF	and	EOF	are	Terraform’s	heredoc	syntax,	which	allows	you
to	create	multiline	strings	without	having	to	insert	newline	characters	all
over	the	place.

You	need	to	do	one	more	thing	before	this	web	server	works.	By	default,
AWS	does	not	allow	any	incoming	or	outgoing	traffic	from	an	EC2
Instance.	To	allow	the	EC2	Instance	to	receive	traffic	on	port	8080,	you
need	to	create	a	security	group:

resource	"aws_security_group"	"instance"	{

		name	=	"terraform-example-instance"

		ingress	{

				from_port			=	8080

				to_port					=	8080

				protocol				=	"tcp"

				cidr_blocks	=	["0.0.0.0/0"]

		}

}

This	code	creates	a	new	resource	called	aws_security_group	(notice
how	all	resources	for	the	AWS	provider	start	with	aws_)	and	specifies
that	this	group	allows	incoming	TCP	requests	on	port	8080	from	the	CIDR
block	0.0.0.0/0.	CIDR	blocks	are	a	concise	way	to	specify	IP	address
ranges.	For	example,	a	CIDR	block	of	10.0.0.0/24	represents	all	IP
addresses	between	10.0.0.0	and	10.0.0.255.	The	CIDR	block	0.0.0.0/0	is
an	IP	address	range	that	includes	all	possible	IP	addresses,	so	this	security
group	allows	incoming	requests	on	port	8080	from	any	IP.

Simply	creating	a	security	group	isn’t	enough;	you	also	need	to	tell	the
EC2	Instance	to	actually	use	it	by	passing	the	ID	of	the	security	group	into
the	vpc_security_group_ids	parameter	of	the	aws_instance
resource.	To	do	that,	you	first	need	to	learn	about	Terraform	expressions.

7

An	expression	in	Terraform	is	anything	that	returns	a	value.	You’ve
already	seen	the	simplest	type	of	expressions,	literals,	such	as	strings	(e.g.,
"ami-0c55b159cbfafe1f0")	and	numbers	(e.g.,	5).	Terraform
supports	many	other	types	of	expressions	that	you’ll	see	throughout	the
book.

One	particularly	useful	type	of	expression	is	a	reference,	which	allows	you
to	access	values	from	other	parts	of	your	code.	To	access	the	ID	of	the
security	group	resource,	you	are	going	to	need	to	use	a	resource	attribute
reference,	which	uses	the	following	syntax:

<PROVIDER>_<TYPE>.<NAME>.<ATTRIBUTE>

Where	PROVIDER	is	the	name	of	the	provider	(e.g.,	aws),	TYPE	is	the
type	of	resource	(e.g.,	security_group),	NAME	is	the	name	of	that
resource	(e.g.,	the	security	group	is	named	"instance"),	and
ATTRIBUTE	is	either	one	of	the	arguments	of	that	resource	(e.g.,	name)
or	one	of	the	attributes	exported	by	the	resource	(you	can	find	the	list	of
available	attributes	in	the	documentation	for	each	resource).	The	security
group	exports	an	attribute	called	id	,	so	the	expression	to	reference	it	will
look	like	this:

aws_security_group.instance.id

You	can	use	this	security	group	ID	in	the	vpc_security_group_ids
parameter	of	the	aws_instance:

resource	"aws_instance"	"example"	{

		ami																				=	"ami-0c55b159cbfafe1f0"

		instance_type										=	"t2.micro"

		vpc_security_group_ids	=	

[aws_security_group.instance.id]

		user_data	=	<<-EOF

														#!/bin/bash

														echo	"Hello,	World"	>	index.html

														nohup	busybox	httpd	-f	-p	8080	&

														EOF

		tags	=	{

				Name	=	"terraform-example"

		}

}

When	you	add	a	reference	from	one	resource	to	another,	you	create	an
implicit	dependency.	Terraform	parses	these	dependencies,	builds	a
dependency	graph	from	them,	and	uses	that	to	automatically	figure	out	in
what	order	it	should	create	resources.	For	example,	Terraform	knows	it
needs	to	create	the	security	group	before	the	EC2	Instance,	since	the	EC2
Instance	references	the	ID	of	the	security	group.	You	can	even	get
Terraform	to	show	you	the	dependency	graph	by	running	the	graph
command:

$	terraform	graph

digraph	{

	 compound	=	"true"

	 newrank	=	"true"

	 subgraph	"root"	{

	 	 "[root]	aws_instance.example"	[label	=	

"aws_instance.example",	shape	=	"box"]

	 	 "[root]	aws_security_group.instance"	

[label	=	"aws_security_group.instance",	shape	=	"box"]

	 	 "[root]	provider.aws"	[label	=	

"provider.aws",	shape	=	"diamond"]

	 	 "[root]	aws_instance.example"	->	"[root]	

aws_security_group.instance"

	 	 "[root]	aws_security_group.instance"	->	

"[root]	provider.aws"

	 	 "[root]	meta.count-boundary	(EachMode	

fixup)"	->	"[root]	aws_instance.example"

	 	 "[root]	provider.aws	(close)"	->	"[root]	

aws_instance.example"

	 	 "[root]	root"	->	"[root]	meta.count-

boundary	(EachMode	fixup)"

	 	 "[root]	root"	->	"[root]	provider.aws	

(close)"

	 }

}

The	output	is	in	a	graph	description	language	called	DOT,	which	you	can
turn	into	an	image,	such	as	the	dependency	graph	in	Figure	2-7,	by	using	a
desktop	app	such	as	Graphviz	or	webapp	such	as	GraphvizOnline.

Figure	2-7.	The	dependency	graph	for	the	EC2	Instance	and	its	security	group

When	Terraform	walks	your	dependency	tree,	it	will	create	as	many
resources	in	parallel	as	it	can,	which	means	it	can	apply	your	changes
fairly	efficiently.	That’s	the	beauty	of	a	declarative	language:	you	just
specify	what	you	want	and	Terraform	figures	out	the	most	efficient	way	to
make	it	happen.

If	you	run	the	apply	command,	you’ll	see	that	Terraform	wants	to	add	a

http://bit.ly/2mPbxmg

security	group	and	update	the	EC2	Instance	with	a	new	one	that	has	the
new	user	data:

$	terraform	apply

(...)

Terraform	will	perform	the	following	actions:

		#	aws_instance.example	must	be	replaced

-/+	resource	"aws_instance"	"example"	{

								ami																										=	"ami-

0c55b159cbfafe1f0"

						~	availability_zone												=	"us-east-2c"	->	

(known	after	apply)

						~	instance_state															=	"running"	->	

(known	after	apply)

								instance_type																=	"t2.micro"

								(...)

						+	user_data																				=	"c765373..."	#	

forces	replacement

						~	volume_tags																		=	{}	->	(known	

after	apply)

						~	vpc_security_group_ids							=	[

										-	"sg-871fa9ec",

]	->	(known	after	apply)

								(...)

				}

		#	aws_security_group.instance	will	be	created

		+	resource	"aws_security_group"	"instance"	{

						+	arn																				=	(known	after	apply)

						+	description												=	"Managed	by	Terraform"

						+	egress																	=	(known	after	apply)

						+	id																					=	(known	after	apply)

						+	ingress																=	[

										+	{

														+	cidr_blocks						=	[

																		+	"0.0.0.0/0",

]

														+	description						=	""

														+	from_port								=	8080

														+	ipv6_cidr_blocks	=	[]

														+	prefix_list_ids		=	[]

														+	protocol									=	"tcp"

														+	security_groups		=	[]

														+	self													=	false

														+	to_port										=	8080

												},

]

						+	name																			=	"terraform-example-

instance"

						+	owner_id															=	(known	after	apply)

						+	revoke_rules_on_delete	=	false

						+	vpc_id																	=	(known	after	apply)

				}

Plan:	2	to	add,	0	to	change,	1	to	destroy.

Do	you	want	to	perform	these	actions?

		Terraform	will	perform	the	actions	described	above.

		Only	'yes'	will	be	accepted	to	approve.

		Enter	a	value:

The	-/+	in	the	plan	output	means	“replace”;	look	for	the	text	“forces
replacement”	to	figure	out	what	is	forcing	Terraform	to	do	a	replacement.
With	EC2	Instances,	changes	to	most	attributes	will	force	the	original
Instance	to	be	terminated	and	a	completely	new	Instance	to	be	created.
This	is	an	example	of	the	immutable	infrastructure	paradigm	discussed	in
“Server	Templating	Tools”.	It’s	worth	mentioning	that	while	the	web
server	is	being	replaced,	any	users	of	that	web	server	would	experience
downtime;	you’ll	see	how	to	do	a	zero-downtime	deployment	with
Terraform	in	Chapter	5.

Since	the	plan	looks	good,	enter	“yes”	and	you’ll	see	your	new	EC2
Instance	deploying,	as	shown	in	Figure	2-8.

Figure	2-8.	The	new	EC2	Instance	with	the	web	server	code	replaces	the	old	Instance

In	the	description	panel	at	the	bottom	of	the	screen,	you’ll	also	see	the
public	IP	address	of	this	EC2	Instance.	Give	it	a	minute	or	two	to	boot	up
and	then	use	a	web	browser	or	a	tool	like	curl	to	make	an	HTTP	request	to
this	IP	address	at	port	8080:

$	curl	http://<EC2_INSTANCE_PUBLIC_IP>:8080

Hello,	World

Yay,	you	now	have	a	working	web	server	running	in	AWS!

NETWORK	SECURITY
To	keep	all	the	examples	in	this	book	simple,	they	deploy	not	only	into	your
Default	VPC	(as	mentioned	earlier),	but	also	the	default	subnets	of	that
VPC.	A	VPC	is	partitioned	into	one	or	more	subnets,	each	with	its	own	IP
addresses.	The	subnets	in	the	Default	VPC	are	all	public	subnets,	which
means	they	get	IP	addresses	that	are	accessible	from	the	public	internet.
This	is	why	you	are	able	to	test	your	EC2	Instance	from	your	home
computer.

Running	a	server	in	a	public	subnet	is	fine	for	a	quick	experiment,	but	in
real-world	usage,	it’s	a	security	risk.	Hackers	all	over	the	world	are
constantly	scanning	IP	addresses	at	random	for	any	weakness.	If	your
servers	are	exposed	publicly,	all	it	takes	is	accidentally	leaving	a	single	port
unprotected	or	running	out-of-date	code	with	a	known	vulnerability,	and
someone	can	break	in.

Therefore,	for	production	systems,	you	should	deploy	all	of	your	servers,
and	certainly	all	of	your	data	stores,	in	private	subnets,	which	have	IP
addresses	that	can	only	be	accessed	from	inside	the	VPC	and	not	from	the
public	internet.	The	only	servers	you	should	run	in	public	subnets	are	a
small	number	of	reverse	proxies	and	load	balancers	(you’ll	see	an	example
of	a	load	balancer	later	in	this	chapter)	that	you	lock	down	as	much	as
possible.

Deploy	a	Configurable	Web	Server
You	may	have	noticed	that	the	web	server	code	has	the	port	8080
duplicated	in	both	the	security	group	and	the	User	Data	configuration.
This	violates	the	Don’t	Repeat	Yourself	(DRY)	principle:	every	piece	of
knowledge	must	have	a	single,	unambiguous,	authoritative	representation
within	a	system. 	If	you	have	the	port	number	copy/pasted	in	two	places,
it’s	too	easy	to	update	it	in	one	place	but	forget	to	make	the	same	change
in	the	other	place.

To	allow	you	to	make	your	code	more	DRY	and	more	configurable,
Terraform	allows	you	to	define	input	variables.	The	syntax	for	declaring	a
variable	is:

variable	"NAME"	{

		[CONFIG	...]

}

8

The	body	of	the	variable	declaration	can	contain	three	parameters,	all	of
them	optional:

description

It’s	always	a	good	idea	to	use	this	parameter	to	document	how	a
variable	is	used.	Your	teammates	will	not	only	be	able	to	see	this
description	while	reading	the	code,	but	also	when	running	the	plan	or
apply	commands	(you’ll	see	an	example	of	this	shortly).

default

There	are	a	number	of	ways	to	provide	a	value	for	the	variable,
including	passing	it	in	at	the	command	line	(using	the	-var	option),
via	a	file	(using	the	-var-file	option),	or	via	an	environment
variable	(Terraform	looks	for	environment	variables	of	the	name
TF_VAR_<variable_name>).	If	no	value	is	passed	in,	the	variable
will	fall	back	to	this	default	value.	If	there	is	no	default	value,
Terraform	will	interactively	prompt	the	user	for	one.

type

This	allows	you	enforce	type	constraints	on	the	variables	a	user	passes
in.	Terraform	supports	a	number	of	type	constraints,	including
string,	number,	bool,	list,	map,	set,	object,	tuple,	and
any.	If	you	don’t	specify	a	type,	Terraform	assumes	the	type	is	any.

Here	is	an	example	of	an	input	variable	that	checks	the	value	you	pass	in
is	a	number:

variable	"number_example"	{

		description	=	"An	example	of	a	number	variable	in	

Terraform"

		type								=	number

		default					=	42

}

And	here’s	an	example	of	a	variable	that	checks	the	value	is	a	list:

variable	"list_example"	{

		description	=	"An	example	of	a	list	in	Terraform"

		type								=	list

		default					=	["a",	"b",	"c"]

}

You	can	combine	type	constraints,	too.	For	example,	here’s	a	list	input
variable	that	requires	all	the	items	in	the	list	to	be	numbers:

variable	"list_numeric_example"	{

		description	=	"An	example	of	a	numeric	list	in	

Terraform"

		type								=	list(number)

		default					=	[1,	2,	3]

}

And	here’s	a	map	that	requires	all	the	values	to	be	strings:

variable	"map_example"	{

		description	=	"An	example	of	a	map	in	Terraform"

		type								=	map(string)

		default	=	{

				key1	=	"value1"

				key2	=	"value2"

				key3	=	"value3"

		}

}

You	can	also	create	more	complicated	structural	types	using	the	object
and	tuple	type	constraints:

variable	"object_example"	{

		description	=	"An	example	of	a	structural	type	in	

Terraform"

		type								=	object({

				name				=	string

				age					=	number

				tags				=	list(string)

				enabled	=	bool

		})

		default	=	{

				name				=	"value1"

				age					=	42

				tags				=	["a",	"b",	"c"]

				enabled	=	true

		}

}

The	example	above	creates	an	input	variable	that	will	require	the	value	to
be	an	object	with	the	keys	name	(which	must	be	a	string),	age	(which
must	be	a	number),	tags	(which	must	be	a	list	of	strings),	and	enabled
(which	must	be	a	boolean).	If	you	were	to	try	to	set	this	variable	to	a	value
that	doesn’t	match	this	type,	Terraform	immediately	gives	you	a	type
error.	For	example,	if	you	try	to	set	enabled	to	a	string	instead	of	a
boolean:

variable	"object_example_with_error"	{

		description	=	"An	example	of	a	structural	type	in	

Terraform	with	an	error"

		type								=	object({

				name				=	string

				age					=	number

				tags				=	list(string)

				enabled	=	bool

		})

		default	=	{

				name				=	"value1"

				age					=	42

				tags				=	["a",	"b",	"c"]

				enabled	=	"invalid"

		}

}

You	get	the	following	error:

$	terraform	apply

Error:	Invalid	default	value	for	variable

		on	variables.tf	line	78,	in	variable	

"object_example_with_error":

		78:			default	=	{

		79:					name				=	"value1"

		80:					age					=	42

		81:					tags				=	["a",	"b",	"c"]

		82:					enabled	=	"invalid"

		83:			}

This	default	value	is	not	compatible	with	the	variable's	

type	constraint:	a

bool	is	required.

For	the	web	server	example,	all	you	need	is	a	variable	that	stores	the	port
number:

variable	"server_port"	{

		description	=	"The	port	the	server	will	use	for	HTTP	

requests"

		type								=	number

}

Note	that	the	server_port	input	variable	has	no	default,	so	if	you
run	the	apply	command	now,	Terraform	will	interactively	prompt	you	to
enter	a	value	for	server_port	and	show	you	the	description	of
the	variable:

$	terraform	apply

var.server_port

		The	port	the	server	will	use	for	HTTP	requests

		Enter	a	value:

If	you	don’t	want	to	deal	with	an	interactive	prompt,	you	can	provide	a
value	for	the	variable	via	the	-var	command-line	option:

$	terraform	plan	-var	"server_port=8080"

You	could	also	set	the	variable	via	an	environment	variable	named
TF_VAR_<name>	where	<name>	is	the	name	of	the	variable	you’re
trying	to	set:

$	export	TF_VAR_server_port=8080

$	terraform	plan

And	if	you	don’t	want	to	deal	with	remembering	extra	command-line
arguments	every	time	you	run	plan	or	apply,	you	can	specify	a
default	value:

variable	"server_port"	{

		description	=	"The	port	the	server	will	use	for	HTTP	

requests"

		type								=	number

		default					=	8080

}

To	use	the	value	from	an	input	variable	in	your	Terraform	code,	you	can
use	a	new	type	of	expression	called	a	variable	reference,	which	has	the
following	syntax:

var.<VARIABLE_NAME>

For	example,	here	is	how	you	can	set	the	from_port	and	to_port
parameters	of	the	security	group	to	the	value	of	the	server_port
variable:

resource	"aws_security_group"	"instance"	{

		name	=	"terraform-example-instance"

		ingress	{

				from_port			=	var.server_port

				to_port					=	var.server_port

				protocol				=	"tcp"

				cidr_blocks	=	["0.0.0.0/0"]

		}

}

It’s	also	a	good	idea	to	use	the	same	variable	when	setting	the	port	in	the
User	Data	script.	To	use	a	reference	inside	of	a	string	literal,	you	need	to
use	a	new	type	of	expression	called	an	interpolation,	which	has	the
following	syntax:

"${...}"

You	can	put	any	valid	reference	within	the	curly	braces	and	Terraform
will	convert	it	to	a	string.	For	example,	here’s	how	you	can	use
var.server_port	inside	of	the	User	Data	string:

		user_data	=	<<-EOF

														#!/bin/bash

														echo	"Hello,	World"	>	index.html

														nohup	busybox	httpd	-f	-p	

${var.server_port}	&

														EOF

In	addition	to	input	variables,	Terraform	also	allows	you	to	define	ouput
variables	with	the	following	syntax:

output	"<NAME>"	{

		value	=	<VALUE>

		[CONFIG	...]

}

The	NAME	is	the	name	of	the	output	variable	and	VALUE	can	be	any
Terraform	expression	that	you	would	like	to	output.	The	CONFIG	can
contain	two	additional	parameters,	both	optional:

description

It’s	always	a	good	idea	to	use	this	parameter	to	document	what	type	of
data	is	contained	in	the	output	variable.

sensitive

Set	this	parameter	to	true	to	tell	Terraform	not	to	log	this	output	at
the	end	of	terraform	apply.	This	is	useful	if	the	output	variable
contains	sensitive	material	or	secrets,	such	as	passwords	or	private
keys.

For	example,	instead	of	having	to	manually	poke	around	the	EC2	console
to	find	the	IP	address	of	your	server,	you	can	provide	the	IP	address	as	an
output	variable:

output	"public_ip"	{

		value							=	aws_instance.example.public_ip

		description	=	"The	public	IP	address	of	the	web	

server"

}

This	code	uses	an	attribute	reference	again,	this	time	referencing	the

public_ip	attribute	of	the	aws_instance	resource.	If	you	run	the
apply	command	again,	Terraform	will	not	apply	any	changes	(since	you
haven’t	changed	any	resources),	but	it	will	show	you	the	new	output	at	the
very	end:

$	terraform	apply

(...)

aws_security_group.instance:	Refreshing	state...	[id=sg-

078ccb4f9533d2c1a]

aws_instance.example:	Refreshing	state...	[id=i-

028cad2d4e6bddec6]

Apply	complete!	Resources:	0	added,	0	changed,	0	

destroyed.

Outputs:

public_ip	=	54.174.13.5

As	you	can	see,	output	variables	show	up	in	the	console	after	you	run
terraform	apply,	which	users	of	your	Terraform	code	may	find
useful	(e.g.,	you	now	know	what	IP	to	test	once	the	web	server	is
deployed).	You	can	also	use	the	terraform	output	command	to	list
all	outputs	without	applying	any	changes:

$	terraform	output

public_ip	=	54.174.13.5

And	you	can	run	terraform	output	<OUTPUT_NAME>	to	see	the
value	of	a	specific	output	called	<OUTPUT_NAME>:

$	terraform	output	public_ip

54.174.13.5

This	is	particularly	handy	for	scripting.	For	example,	you	could	create	a
simple	deployment	script	that	runs	terraform	apply	to	deploy	the
web	server,	uses	terraform	output	public_ip	to	grab	its	public
IP,	and	runs	curl	on	the	IP	as	a	quick	smoke	test	to	validate	that	the
deployment	worked.

Input	and	output	variables	are	also	essential	ingredients	in	creating
configurable	and	reusable	infrastructure	code.

Deploy	a	Cluster	of	Web	Servers
Running	a	single	server	is	a	good	start,	but	in	the	real	world,	a	single
server	is	a	single	point	of	failure.	If	that	server	crashes,	or	if	it	becomes
overloaded	from	too	much	traffic,	users	will	be	unable	to	access	your	site.
The	solution	is	to	run	a	cluster	of	servers,	routing	around	servers	that	go
down,	and	adjusting	the	size	of	the	cluster	up	or	down	based	on	traffic.

Managing	such	a	cluster	manually	is	a	lot	of	work.	Fortunately,	you	can
let	AWS	take	care	of	it	for	by	you	using	an	Auto	Scaling	Group	(ASG),	as
shown	in	Figure	2-9.	An	ASG	takes	care	of	a	lot	of	tasks	for	you
completely	automatically,	including	launching	a	cluster	of	EC2	Instances,
monitoring	the	health	of	each	Instance,	replacing	failed	Instances,	and
adjusting	the	size	of	the	cluster	in	response	to	load.

9

Figure	2-9.	Instead	of	a	single	web	server,	run	a	cluster	of	web	servers	using	an	Auto
Scaling	Group

The	first	step	in	creating	an	ASG	is	to	create	a	launch	configuration,
which	specifies	how	to	configure	each	EC2	Instance	in	the	ASG.	The
aws_launch_configuration	resource	uses	almost	exactly	the	same
parameters	as	the	aws_instance	resource	(only	two	parameters	are
different:	ami	is	now	image_id	and	vpc_security_group_ids	is
now	security_groups),	so	you	can	cleanly	replace	the	latter	with	the
former:

resource	"aws_launch_configuration"	"example"	{

		image_id								=	"ami-0c55b159cbfafe1f0"

		instance_type			=	"t2.micro"

		security_groups	=	[aws_security_group.instance.id]

		user_data	=	<<-EOF

														#!/bin/bash

														echo	"Hello,	World"	>	index.html

														nohup	busybox	httpd	-f	-p	

${var.server_port}	&

														EOF

}

Now	you	can	create	the	ASG	itself	using	the
aws_autoscaling_group	resource:

resource	"aws_autoscaling_group"	"example"	{

		launch_configuration	=	

aws_launch_configuration.example.name

		min_size	=	2

		max_size	=	10

		tag	{

				key																	=	"Name"

				value															=	"terraform-asg-example"

				propagate_at_launch	=	true

		}

}

This	ASG	will	run	between	2	and	10	EC2	Instances	(defaulting	to	2	for	the
initial	launch),	each	tagged	with	the	name	“terraform-asg-example”.	The
ASG	uses	a	reference	to	fill	in	the	launch	configuration	name.

To	make	this	ASG	work,	you	need	to	specify	one	more	parameter:
subnet_ids.	This	parameter	tells	the	ASG	into	which	VPC	subnets	the
EC2	Instances	should	be	deployed	(see	Network	Security	for	background
info	on	subnets).	Each	subnet	lives	in	an	isolated	AWS	Availability	Zone

(that	is,	isolated	data	center),	so	by	deploying	your	Instances	across
multiple	subnets,	you	ensure	that	your	service	can	keep	running	even	if
some	of	the	data	centers	have	an	outage.	You	could	hard-code	the	list	of
subnets,	but	that	won’t	be	maintainable	or	portable,	so	a	better	option	is	to
use	data	sources	to	get	the	list	of	subnets	in	your	AWS	account.

A	data	source	represents	a	piece	of	read-only	information	that	is	fetched
from	the	provider	(in	this	case,	AWS)	every	time	you	run	Terraform.
Adding	a	data	source	to	your	Terraform	configurations	does	not	create
anything	new;	it’s	just	a	way	to	query	the	provider’s	APIs	for	data	and	to
make	that	data	available	to	the	rest	of	your	Terraform	code.	Each
Terraform	provider	exposes	a	variety	of	data	sources.	For	example,	the
AWS	provider	includes	data	sources	to	look	up	VPC	data,	subnet	data,
AMI	IDs,	IP	address	ranges,	the	current	user’s	identity,	and	much	more.

The	syntax	for	using	a	data	source	is	very	similar	to	the	syntax	of	a
resource:

data	"<PROVIDER>_<TYPE>"	"<NAME>"	{

		[CONFIG	...]

}

PROVIDER	is	the	name	of	a	provider	(e.g.,	aws),	TYPE	is	the	type	of	data
source	you	want	to	use	(e.g.,	vpc),	NAME	is	an	identifier	you	can	use
throughout	the	Terraform	code	to	refer	to	this	data	source,	and	CONFIG
consists	of	one	or	more	arguments	that	are	specific	to	that	data	source.	For
example,	here	is	how	you	can	use	the	aws_vpc	data	source	to	look	up	the
data	for	your	Default	VPC	(see	A	Note	on	Default	VPCs	for	background
information):

data	"aws_vpc"	"default"	{

		default	=	true

}

Note	that	with	data	sources,	the	arguments	you	pass	in	are	typically	search
filters	that	tell	the	data	source	what	information	you’re	looking	for.	With
the	aws_vpc	data	source,	the	only	filter	you	need	is	default	=
true,	which	tells	Terraform	to	look	up	the	default	VPC	in	your	AWS
account.

To	get	the	data	out	of	a	data	source,	you	use	the	following	attribute
reference	syntax:

data.<PROVIDER>_<TYPE>.<NAME>.<ATTRIBUTE>

For	example,	to	get	the	ID	of	the	VPC	from	the	aws_vpc	data	source,
you	would	use	the	following:

data.aws_vpc.default.id

You	can	combine	this	with	another	data	source,	aws_subnet_ids,	to
look	up	the	subnets	within	that	VPC:

data	"aws_subnet_ids"	"default"	{

		vpc_id	=	data.aws_vpc.default.id

}

Finally,	you	can	pull	the	subnet	IDs	out	of	the	aws_subnet_ids	data
source	and	tell	your	ASG	to	use	those	subnets	via	the	(somewhat	oddly
named)	vpc_zone_identifier	argument:

resource	"aws_autoscaling_group"	"example"	{

		launch_configuration	=	

aws_launch_configuration.example.name

		vpc_zone_identifier		=	data.aws_subnet_ids.default.ids

		min_size	=	2

		max_size	=	10

		tag	{

				key																	=	"Name"

				value															=	"terraform-asg-example"

				propagate_at_launch	=	true

		}

}

Deploy	a	Load	Balancer
At	this	point,	you	can	deploy	your	ASG,	but	you’ll	have	a	small	problem:
you	now	have	multiple	servers,	each	with	its	own	IP	address,	but	you
typically	want	to	give	your	end	users	only	a	single	IP	to	use.	One	way	to
solve	this	problem	is	to	deploy	a	load	balancer	to	distribute	traffic	across
your	servers	and	to	give	all	your	users	the	IP	(actually,	the	DNS	name)	of
the	load	balancer.	Creating	a	load	balancer	that	is	highly	available	and
scalable	is	a	lot	of	work.	Once	again,	you	can	let	AWS	take	care	of	it	for
you,	this	time	by	using	Amazon’s	Elastic	Load	Balancer	(ELB)	service,	as
shown	in	Figure	2-10.

Figure	2-10.	Use	an	Elastic	Load	Balancer	to	distribute	traffic	across	the	Auto	Scaling
Group

AWS	offers	three	different	types	of	load	balancers:

Application	Load	Balancer	(ALB)

Best	suited	for	load	balancing	of	HTTP	and	HTTPS	traffic.	Operates	at
the	application	layer	(“Layer	7”)	of	the	OSI	model.

Network	Load	Balancer	(NLB)

Best	suited	for	load	balancing	of	TCP	and	TLS	traffic,	especially	when
extreme	performance	is	required.	Operates	at	the	transport	layer
(“Layer	4”)	of	the	OSI	model.

Classic	Load	Balancer	(CLB)

This	is	the	“legacy”	load	balancer	that	predates	both	the	ALB	and

NLB.	It	can	handle	HTTP,	HTTPS,	TCP,	and	TLS	traffic,	but	with	far
fewer	features	than	either	the	ALB	or	NLB.	Operates	at	both	the
application	layer	(“Layer	7”)	and	transport	layer	(“Layer	4”)	of	the
OSI	model.

Most	applications	these	days	should	use	either	the	ALB	or	the	NLB.	Since
the	simple	web	server	example	you’re	working	on	is	an	HTTP	app	without
any	extreme	performance	requirements,	the	ALB	is	going	to	be	the	best
fit.

As	shown	in	Figure	2-11,	the	ALB	consists	of	several	parts:

1.	 Listener:	listens	on	a	specific	port	(e.g.,	80)	and	protocol	(e.g.,
443)

2.	 Listener	rule:	takes	requests	that	come	into	a	listener	and	sends
those	that	match	specific	paths	(e.g.,	/foo	and	/bar)	or	host
names	(e.g.,	foo.example.com	and	bar.example.com)	to
specific	target	groups.

3.	 Target	groups:	one	or	more	servers	that	receive	requests	from	the
load	balancer.	The	target	group	also	performs	health	checks	on
these	servers	and	only	sends	requests	to	healthy	nodes.

Figure	2-11.	Application	Load	Balancer	(ALB)	overview

The	first	step	is	to	create	the	ALB	itself	using	the	aws_lb	resource:

resource	"aws_lb"	"example"	{

		name															=	"terraform-asg-example"

		load_balancer_type	=	"application"

		subnets												=	data.aws_subnet_ids.default.ids

}

Note	that	the	subnets	parameter	configures	the	load	balancer	to	use	all
the	subnets	in	your	default	VPC	by	using	the	aws_subnet_ids	data
source. 	This	is	because	AWS	load	balancers	don’t	consist	of	a	single
server,	but	multiple	servers	that	can	run	in	separate	subnets	(and	therefore,
separate	data	centers).	AWS	will	automatically	scale	the	number	of	load
balancer	servers	up	and	down	based	on	traffic	and	handle	failover	if	one	of
those	servers	goes	down,	so	you	get	scalability	and	high	availability	out	of
the	box.

The	next	step	is	to	define	a	listener	for	this	ALB	using	the
aws_lb_listener	resource:

resource	"aws_lb_listener"	"http"	{

		load_balancer_arn	=	aws_lb.example.arn

		port														=	80

		protocol										=	"HTTP"

		#	By	default,	return	a	simple	404	page

		default_action	{

				type	=	"fixed-response"

				fixed_response	{

						content_type	=	"text/plain"

						message_body	=	"404:	page	not	found"

						status_code		=	404

				}

		}

}

10

This	listener	configures	the	ALB	to	listen	on	the	default	HTTP	port,	port
80,	use	HTTP	as	the	protocol,	and	send	a	simple	404	page	as	the	default
response	for	requests	that	don’t	match	any	listener	rules.

Note	that,	by	default,	all	AWS	resources,	including	ALBs,	don’t	allow	any
incoming	or	outgoing	traffic,	so	you	need	to	create	a	new	security	group
specifically	for	the	ALB	to	allow	incoming	requests	on	port	80,	so	you	can
access	the	load	balancer	over	HTTP,	as	well	as	outgoing	requests	on	all
ports,	so	the	load	balancer	can	perform	health	checks,	as	you’ll	configure
shortly:

resource	"aws_security_group"	"alb"	{

		name	=	"terraform-example-alb"

		#	Allow	inbound	HTTP	requests

		ingress	{

				from_port			=	80

				to_port					=	80

				protocol				=	"tcp"

				cidr_blocks	=	["0.0.0.0/0"]

		}

		#	Allow	all	outbound	requests

		egress	{

				from_port			=	0

				to_port					=	0

				protocol				=	"-1"

				cidr_blocks	=	["0.0.0.0/0"]

		}

}

You’ll	need	to	tell	the	aws_lb	resource	to	use	this	security	group	via	the
security_groups	argument:

resource	"aws_lb"	"example"	{

		name															=	"terraform-asg-example"

		load_balancer_type	=	"application"

		subnets												=	data.aws_subnet_ids.default.ids

		security_groups				=	[aws_security_group.alb.id]

}

Next,	you	need	to	create	a	target	group	for	your	ASG	using	the
aws_lb_target_group	resource:

Note	that	this	target	group	will	health	check	your	servers	by	periodically
sending	an	HTTP	request	to	each	server	and	only	considering	the	server
“healthy”	if	the	server	returns	a	response	that	matches	the	configured
matcher	(i.e.,	returns	a	200	OK).	If	a	server	fails	to	respond,	perhaps
because	that	server	has	gone	down	or	is	overloaded,	it	will	be	marked	as
“unhealthy,”	and	the	target	group	will	automatically	stop	sending	traffic	to
it	to	minimize	disruption	for	your	users.

How	does	the	target	group	know	which	EC2	Instances	to	send	requests	to?
You	could	attach	a	static	list	of	EC2	Instances	to	the	target	group	using	the
aws_lb_target_group_attachment	resource,	but	with	an	ASG,
Instances	may	launch	or	terminate	at	any	time,	so	a	static	list	won’t	work.
Instead,	you	can	take	advantage	of	the	first-class	integration	between	the
ASG	and	the	ALB.	Go	back	to	the	aws_autoscaling_group
resource	and	set	its	target_group_arns	argument	to	point	at	your
new	target	group:

resource	"aws_autoscaling_group"	"example"	{

		launch_configuration	=	

aws_launch_configuration.example.name

		vpc_zone_identifier		=	data.aws_subnet_ids.default.ids

		target_group_arns	=	[aws_lb_target_group.asg.arn]

		health_check_type	=	"ELB"

		min_size	=	2

		max_size	=	10

		tag	{

				key																	=	"Name"

				value															=	"terraform-asg-example"

				propagate_at_launch	=	true

		}

}

This	will	tell	the	ASG	to	register	each	Instance	in	the	target	group	when
that	Instance	is	booting.	Also,	notice	that	the	health_check_type	is
now	"ELB".	The	default	health_check_type	is	"EC2",	which	is	a
minimal	health	check	that	only	a	considers	Instance	unhealthy	if	the	AWS
hypervisor	says	the	server	is	completely	down	or	unreachable.	The	"ELB"
health	check	is	much	more	robust,	as	it	tells	the	ASG	to	use	the	target
group’s	health	check	to	determine	if	an	Instance	is	healthy	or	not	and	to
automatically	replace	Instances	if	the	target	group	reports	them	as
unhealthy.	That	way,	Instances	will	be	replaced	not	only	if	they	are
completely	down,	but	also	if,	for	example,	they’ve	stopped	serving
requests	because	they	ran	out	of	memory	or	a	critical	process	crashed.

Finally,	it’s	time	to	tie	all	these	pieces	together	by	creating	listener	rules
using	the	aws_lb_listener_rule	resource:

resource	"aws_lb_listener_rule"	"asg"	{

		listener_arn	=	aws_lb_listener.http.arn

		priority					=	100

		condition	{

				field		=	"path-pattern"

				values	=	["*"]

		}

		action	{

				type													=	"forward"

				target_group_arn	=	aws_lb_target_group.asg.arn

		}

}

The	code	above	adds	a	listener	rule	that	send	requests	that	match	any	path
to	the	target	group	that	contains	your	ASG.

One	last	thing	to	do	before	deploying	the	load	balancer:	replace	the	old
public_ip	output	of	the	single	EC2	Instance	you	had	before	with	an
output	that	shows	the	DNS	name	of	the	ALB:

output	"alb_dns_name"	{

		value							=	aws_lb.example.dns_name

		description	=	"The	domain	name	of	the	load	balancer"

}

Run	terraform	apply	and	read	through	the	plan	output.	You	should
see	that	your	original	single	EC2	Instance	is	being	removed	and	in	its
place,	Terraform	will	create	a	launch	configuration,	ASG,	ALB,	and	a
security	group.	If	the	plan	looks	good,	type	in	“yes”	and	hit	enter.	When
apply	completes,	you	should	see	the	alb_dns_name	output:

Outputs:

alb_dns_name	=	terraform-asg-example-123.us-east-

2.elb.amazonaws.com

Copy	this	URL	down.	It’ll	take	a	couple	minutes	for	the	Instances	to	boot
and	show	up	as	healthy	in	the	ALB.	In	the	meantime,	you	can	inspect	what
you’ve	deployed.	Open	up	the	ASG	section	of	the	EC2	console,	and	you
should	see	that	the	ASG	has	been	created,	as	shown	in	Figure	2-12.

https://console.aws.amazon.com/ec2/autoscaling/home

Figure	2-12.	The	Auto	Scaling	Group

If	you	switch	over	to	the	Instances	tab,	you’ll	see	the	two	EC	Instances
launching,	as	shown	in	Figure	2-13.

Figure	2-13.	The	EC2	Instances	in	the	ASG	are	launching

If	you	click	on	the	Load	Balancers	tab,	you’ll	see	your	ALB,	as	shown	in
Figure	2-14.

Figure	2-14.	The	Application	Load	Balancer

Finally,	if	you	click	on	the	Target	Groups	tab,	you	can	find	your	target
group,	as	shown	in	Figure	2-15.

Figure	2-15.	The	Application	Load	Balancer

If	you	click	on	your	target	group	and	find	the	Targets	tab	in	the	bottom
half	of	the	screen,	you	can	see	your	Instances	registering	with	the	target
group	and	going	through	health	checks.	Wait	for	the	“Status”	indicator	to
say	“healthy”	for	both	of	them.	This	typically	takes	1	to	2	minutes.	Once
you	see	it,	test	the	alb_dns_name	output	you	copied	earlier:

$	curl	http://<alb_dns_name>

Hello,	World

Success!	The	ALB	is	routing	traffic	to	your	EC2	Instances.	Each	time	you
hit	the	URL,	it’ll	pick	a	different	Instance	to	handle	the	request.	You	now
have	a	fully	working	cluster	of	web	servers!

At	this	point,	you	can	see	how	your	cluster	responds	to	firing	up	new
Instances	or	shutting	down	old	ones.	For	example,	go	to	the	Instances	tab,
and	terminate	one	of	the	Instances	by	selecting	its	checkbox,	selecting	the

“Actions”	button	at	the	top,	and	setting	the	“Instance	State”	to
“Terminate.”	Continue	to	test	the	ALB	URL	and	you	should	get	a	200	OK
for	each	request,	even	while	terminating	an	Instance,	as	the	ALB	will
automatically	detect	that	the	Instance	is	down	and	stop	routing	to	it.	Even
more	interestingly,	a	short	time	after	the	Instance	shuts	down,	the	ASG
will	detect	that	fewer	than	two	Instances	are	running,	and	automatically
launch	a	new	one	to	replace	it	(self-healing!).	You	can	also	see	how	the
ASG	resizes	itself	by	adding	a	desired_capacity	parameter	to	your
Terraform	code	and	rerunning	apply.

Cleanup
When	you’re	done	experimenting	with	Terraform,	either	at	the	end	of	this
chapter,	or	at	the	end	of	future	chapters,	it’s	a	good	idea	to	remove	all	the
resources	you	created	so	AWS	doesn’t	charge	you	for	them.	Since
Terraform	keeps	track	of	what	resources	you	created,	cleanup	is	simple.
All	you	need	to	do	is	run	the	destroy	command:

$	terraform	destroy

(...)

Terraform	will	perform	the	following	actions:

		#	aws_autoscaling_group.example	will	be	destroyed

		-	resource	"aws_autoscaling_group"	"example"	{

						(...)

				}

		#	aws_launch_configuration.example	will	be	destroyed

		-	resource	"aws_launch_configuration"	"example"	{

						(...)

				}

		#	aws_lb.example	will	be	destroyed

		-	resource	"aws_lb"	"example"	{

						(...)

				}

		(...)

Plan:	0	to	add,	0	to	change,	8	to	destroy.

Do	you	really	want	to	destroy	all	resources?

		Terraform	will	destroy	all	your	managed	

infrastructure,	as	shown	above.

		There	is	no	undo.	Only	'yes'	will	be	accepted	to	

confirm.

		Enter	a	value:

It	goes	without	saying	that	you	should	rarely,	if	ever,	run	destroy	in
prod!	There’s	no	“undo”	for	the	destroy	command,	so	Terraform	gives
you	one	final	chance	to	review	what	you’re	doing,	showing	you	the	list	of
all	the	resources	you’re	about	to	delete,	and	prompting	you	to	confirm	the
deletion.	If	everything	looks	good,	type	in	“yes”	and	hit	Enter,	and
Terraform	will	build	the	dependency	graph	and	delete	all	the	resources	in
the	right	order,	using	as	much	parallelism	as	possible.	In	a	minute	or	two,
your	AWS	account	should	be	clean	again.

Note	that	later	in	the	book,	you	will	continue	to	evolve	this	example,	so
don’t	delete	the	Terraform	code!	However,	feel	free	to	run	destroy	on
the	actual	deployed	resources	whenever	you	want.	After	all,	the	beauty	of
infrastructure	as	code	is	that	all	of	the	information	about	those	resources	is
captured	in	code,	so	you	can	re-create	all	of	them	at	any	time	with	a	single
command:	terraform	apply.	In	fact,	you	may	want	to	commit	your
latest	changes	to	Git	so	you	can	keep	track	of	the	history	of	your
infrastructure.

Conclusion
You	now	have	a	basic	grasp	of	how	to	use	Terraform.	The	declarative
language	makes	it	easy	to	describe	exactly	the	infrastructure	you	want	to
create.	The	plan	command	allows	you	to	verify	your	changes	and	catch
bugs	before	deploying	them.	Variables,	references,	and	dependencies
allow	you	to	remove	duplication	from	your	code	and	make	it	highly
configurable.

However,	you’ve	only	scratched	the	surface.	In	Chapter	3,	you’ll	learn
how	Terraform	keeps	track	of	what	infrastructure	it	has	already	created,
and	the	profound	impact	that	has	on	how	you	should	structure	your
Terraform	code.	In	Chapter	4,	you’ll	see	how	to	create	reusable
infrastructure	with	Terraform	modules.

1
	If	you	find	the	AWS	terminology	confusing,	be	sure	to	check	out	AWS	in	Plain
English.

2
	For	more	details	on	AWS	user	management	best	practices,	see
http://amzn.to/2lvJ8Rf.

3
	You	can	learn	more	about	IAM	Policies	here:	http://amzn.to/2lQs1MA.

4
	You	can	also	write	Terraform	code	in	pure	JSON	in	files	with	the	extension
.tf.json.	You	can	learn	more	about	Terraform’s	HCL	and	JSON	syntax	here:
https://www.terraform.io/docs/configuration/syntax.html.

5
	You	can	learn	more	about	AWS	regions	and	availability	zones	here:
http://bit.ly/1NATGqS.

6
	You	can	find	a	handy	list	of	HTTP	server	one-liners	here:
https://gist.github.com/willurd/5720255.

7
	To	learn	more	about	how	CIDR	works,	see	http://bit.ly/2l8Ki9g.	For	a	handy
calculator	that	converts	between	IP	address	ranges	and	CIDR	notation,	see
http://www.ipaddressguide.com/cidr.

https://www.expeditedssl.com/aws-in-plain-english
http://amzn.to/2lvJ8Rf
http://amzn.to/2lQs1MA
https://www.terraform.io/docs/configuration/syntax.html
http://bit.ly/1NATGqS
https://gist.github.com/willurd/5720255
http://bit.ly/2l8Ki9g
http://www.ipaddressguide.com/cidr

8
	From	The	Pragmatic	Programmer	by	Andy	Hunt	and	Dave	Thomas	(Addison-
Wesley	Professional).

9
	For	a	deeper	look	at	how	to	build	highly	available	and	scalable	systems	on	AWS,
see:	http://bit.ly/2mpSXUZ.

10
	To	keep	these	examples	simple,	we’re	running	the	EC2	Instances	and	ALB	in	the
same	subnets.	In	production	usage,	you’d	most	likely	run	them	in	different
subnets,	with	the	EC2	Instances	in	private	subnets	(so	they	aren’t	directly
accessible	from	the	public	Internet)	and	the	ALBs	in	public	subnets	(so	users	can
access	them	directly).

http://bit.ly/2mpSXUZ

Chapter	3.	How	to	Manage
Terraform	State

In	Chapter	2,	as	you	were	using	Terraform	to	create	and	update	resources,
you	may	have	noticed	that	every	time	you	ran	terraform	plan	or
terraform	apply,	Terraform	was	able	to	find	the	resources	it	created
previously	and	update	them	accordingly.	But	how	did	Terraform	know
which	resources	it	was	supposed	to	manage?	You	could	have	all	sorts	of
infrastructure	in	your	AWS	account,	deployed	through	a	variety	of
mechanisms	(some	manually,	some	via	Terraform,	some	via	the	CLI),	so
how	does	Terraform	know	which	infrastructure	it’s	responsible	for?

In	this	chapter,	you’re	going	to	see	how	Terraform	tracks	the	state	of	your
infrastructure	and	the	impact	that	has	on	file	layout,	isolation,	and	locking
in	a	Terraform	project.	Here	are	the	key	topics	I’ll	go	over:

What	is	Terraform	state?

Shared	storage	for	state	files

Locking	state	files

Isolating	state	files

Isolation	via	workspaces

Isolation	via	file	layout

Read-only	state

EXAMPLE	CODE

As	a	reminder,	all	of	the	code	examples	in	the	book	can	be	found	at	the
following	URL:	https://github.com/brikis98/terraform-up-and-running-
code.

What	Is	Terraform	State?
Every	time	you	run	Terraform,	it	records	information	about	what
infrastructure	it	created	in	a	Terraform	state	file.	By	default,	when	you	run
Terraform	in	the	folder	/foo/bar,	Terraform	creates	the	file
/foo/bar/terraform.tfstate.	This	file	contains	a	custom	JSON	format	that
records	a	mapping	from	the	Terraform	resources	in	your	configuration
files	to	the	representation	of	those	resources	in	the	real	world.	For
example,	let’s	say	your	Terraform	configuration	contained	the	following:

resource	"aws_instance"	"example"	{

		ami											=	"ami-0c55b159cbfafe1f0"

		instance_type	=	"t2.micro"

}

After	running	terraform	apply,	here	is	a	small	snippet	of	the
contents	of	the	terraform.tfstate	file	(truncated	for	readability):

{

		"version":	4,

		"terraform_version":	"0.12.0",

		"serial":	1,

		"lineage":	"1f2087f9-4b3c-1b66-65db-8b78faafc6fb",

		"outputs":	{},

		"resources":	[

				{

						"mode":	"managed",

						"type":	"aws_instance",

https://github.com/brikis98/terraform-up-and-running-code

						"name":	"example",

						"provider":	"provider.aws",

						"instances":	[

								{

										"schema_version":	1,

										"attributes":	{

												"ami":	"ami-0c55b159cbfafe1f0",

												"availability_zone":	"us-east-2c",

												"id":	"i-00d689a0acc43af0f",

												"instance_state":	"running",

												"instance_type":	"t2.micro",

												"(...)":	"(truncated)"

										}

								}

]

				}

]

}

Using	this	simple	JSON	format,	Terraform	knows	that	a	resource	with
type	aws_instance	and	name	example	corresponds	to	an	EC2
Instance	in	your	AWS	account	with	ID	i-00d689a0acc43af0f.
Every	time	you	run	Terraform,	it	can	fetch	the	latest	status	of	this	EC2
Instance	from	AWS	and	compare	that	to	what’s	in	your	Terraform
configurations	to	determine	what	changes	need	to	be	applied.	In	other
words,	the	output	of	the	plan	command	is	a	diff	between	the	code	on
your	computer	and	the	infrastructure	deployed	in	the	real	world,	as
discovered	via	IDs	in	the	state	file.

THE	STATE	FILE	IS	A	PRIVATE	API
The	state	file	format	is	a	private	API	that	changes	with	every	release	and	is
meant	only	for	internal	use	within	Terraform.	You	should	never	edit	the

Terraform	state	files	by	hand	or	write	code	that	reads	them	directly.

If	for	some	reason	you	need	to	manipulate	the	state	file—which	should	be	a
relatively	rare	occurrence—use	the	terraform	import	command
(you’ll	see	an	example	of	this	in	Chapter	5)	or	the	terraform	state
command	(this	is	only	for	advanced	use	cases).

If	you’re	using	Terraform	for	a	personal	project,	storing	state	in	a	single
terraform.tfstate	file	that	lives	locally	on	your	computer	works	just	fine.
But	if	you	want	to	use	Terraform	as	a	team	on	a	real	product,	you	run	into
several	problems:

Shared	storage	for	state	files

To	be	able	to	use	Terraform	to	update	your	infrastructure,	each	of	your
team	members	needs	access	to	the	same	Terraform	state	files.	That
means	you	need	to	store	those	files	in	a	shared	location.

Locking	state	files

As	soon	as	data	is	shared,	you	run	into	a	new	problem:	locking.
Without	locking,	if	two	team	members	are	running	Terraform	at	the
same	time,	you	may	run	into	race	conditions	as	multiple	Terraform
processes	make	concurrent	updates	to	the	state	files,	leading	to
conflicts,	data	loss,	and	state	file	corruption.

Isolating	state	files

When	making	changes	to	your	infrastructure,	it’s	a	best	practice	to
isolate	different	environments.	For	example,	when	making	a	change	in
a	testing	or	staging	environment,	you	want	to	be	sure	that	there	is	no
way	you	can	accidentally	break	production.	But	how	can	you	isolate
your	changes	if	all	of	your	infrastructure	is	defined	in	the	same
Terraform	state	file?

In	the	following	sections,	I’ll	dive	into	each	of	these	problems	and	show

you	how	to	solve	them.

Shared	Storage	for	State	Files
The	most	common	technique	for	allowing	multiple	team	members	to
access	a	common	set	of	files	is	to	put	them	in	version	control	(e.g.,	Git).
While	you	should	definitely	store	your	Terraform	code	in	version	control,
storing	Terraform	state	in	version	control	is	a	bad	idea	for	two	reasons:

Manual	error

It’s	too	easy	to	forget	to	pull	down	the	latest	changes	from	version
control	before	running	Terraform	or	to	push	your	latest	changes	to
version	control	after	running	Terraform.	It’s	just	a	matter	of	time
before	someone	on	your	team	runs	Terraform	with	out-of-date	state
files	and	as	a	result,	accidentally	rolls	back	or	duplicates	previous
deployments.

Locking

Most	version	control	systems	do	not	provide	any	form	of	locking	that
would	prevent	two	team	members	from	running	terraform	apply
on	the	same	state	file	at	the	same	time.

Secrets

All	data	in	Terraform	state	files	is	stored	in	plain	text.	This	is	a
problem	because	certain	Terraform	resources	need	to	store	sensitive
data.	For	example,	if	you	use	the	aws_db_instance	resource	to
create	a	database,	Terraform	will	store	the	username	and	password	for
the	database	in	a	state	file	in	plain	text.	Storing	plain-text	secrets
anywhere	is	a	bad	idea,	including	version	control.	As	of	May,	2019,
this	is	an	open	issue	in	the	Terraform	community,	although	there	are
some	reasonable	workarounds,	as	I	will	discuss	shortly.

Instead	of	using	version	control,	the	best	way	to	manage	shared	storage	for

https://github.com/hashicorp/terraform/issues/516

state	files	is	to	use	Terraform’s	built-in	support	for	remote	backends.	Each
backend	determines	how	Terraform	loads	and	stores	state.	The	default
backend,	which	you’ve	been	using	this	whole	time,	is	the	local	backend,
which	stores	the	state	file	on	your	local	disk.	Remote	backends	allow	you
to	store	the	state	file	in	a	remote,	shared	store.	A	number	of	remote
backends	are	supported,	including	Amazon	S3,	Azure	Storage,	Google
Cloud	Storage,	and	HashiCorp’s	Terraform	Pro	and	Terraform	Enterprise.

Remote	backends	solve	all	three	of	the	issues	listed	above:

Manual	error

Once	you	configure	a	remote	backend,	Terraform	will	automatically
load	the	state	file	from	that	backend	every	time	you	run	plan	or
apply	and	it’ll	automatically	store	the	state	file	in	that	backend	after
each	apply,	so	there’s	no	chance	of	manual	error.

Locking

Most	of	the	remote	backends	natively	support	locking.	To	run
terraform	apply,	Terraform	will	automatically	acuire	a	lock;	if
someone	else	is	already	running	apply,	they	will	already	have	the
lock,	and	you	will	have	to	wait.	You	can	run	apply	with	the	-lock-
timeout=<TIME>	parameter	to	tell	Terraform	to	wait	up	to	TIME
for	a	lock	to	be	released	(e.g.,	-lock-timeout=10m	will	wait	for
10	minutes).

Secrets

Most	of	the	remote	backends	natively	support	encryption	in	transit	and
encryption	on	disk	of	the	state	file.	Moreover,	those	backends	usually
expose	ways	to	configure	access	permissions	(e.g.,	using	IAM	policies
with	an	S3	bucket),	so	you	can	control	who	has	access	to	you	state
files	and	the	secrets	the	may	contain.	It	would	still	be	better	if
Terraform	natively	supported	encrypting	secrets	within	the	state	file,
but	these	remote	backends	reduce	most	of	the	security	concern,	as	at

least	the	state	file	isn’t	stored	in	plaintext	on	disk	anywhere.

If	you’re	using	Terraform	with	AWS,	Amazon	S3	(Simple	Storage
Service),	which	is	Amazon’s	managed	file	store,	is	typically	your	best	bet
as	a	remote	backend	for	the	following	reasons:

It’s	a	managed	service,	so	you	don’t	have	to	deploy	and	manage
extra	infrastructure	to	use	it.

It’s	designed	for	99.999999999%	durability	and	99.99%
availability,	which	means	you	don’t	have	to	worry	too	much
about	data	loss	or	outages.

It	supports	encryption,	which	reduces	worries	about	storing
sensitive	data	in	state	files.	Anyone	on	your	team	who	has	access
to	that	S3	bucket	will	be	able	to	see	the	state	files	in	an
unencrypted	form,	so	this	is	still	a	partial	solution,	but	at	least	the
data	will	be	encrypted	at	rest	(S3	supports	server-side	encryption
using	AES-256)	and	in	transit	(Terraform	uses	SSL	to	read	and
write	data	in	S3).

It	supports	locking	via	DynamoDB.	More	on	this	below.

It	supports	versioning,	so	every	revision	of	your	state	file	is
stored,	and	you	can	always	roll	back	to	an	older	version	if
something	goes	wrong.

It’s	inexpensive,	with	most	Terraform	usage	easily	fitting	into	the
free	tier.

To	enable	remote	state	storage	with	S3,	the	first	step	is	to	create	an	S3
bucket.	Create	a	main.tf	file	in	a	new	folder	(it	should	be	a	different	folder
from	where	you	store	the	configurations	from	Chapter	2)	and	at	the	top	of
the	file,	specify	AWS	as	the	provider:

provider	"aws"	{

		region	=	"us-east-2"

}

1

2

Next,	create	an	S3	bucket	by	using	the	aws_s3_bucket	resource:

resource	"aws_s3_bucket"	"terraform_state"	{

		bucket	=	"terraform-up-and-running-state"

		#	Prevent	accidental	deletion	of	this	S3	bucket

		lifecycle	{

				prevent_destroy	=	true

		}

		#	Enable	versioning	so	we	can	see	the	full	revision	

history	of	our

		#	state	files

		versioning	{

				enabled	=	true

		}

		#	Enable	server-side	encryption	by	default

		server_side_encryption_configuration	{

				rule	{

						apply_server_side_encryption_by_default	{

								sse_algorithm	=	"AES256"

						}

				}

		}

}

This	code	sets	four	arguments:

bucket

This	is	the	name	of	the	S3	bucket.	Note	that	S3	bucket	names	must	be
globally	unique	amongst	all	AWS	customers.	Therefore,	you	will	have
to	change	the	bucket	parameter	from	"terraform-up-and-
running-state"	(which	I	already	created)	to	your	own	name.
Make	sure	to	remember	this	name	and	take	note	of	what	AWS	region
you’re	using,	as	you’ll	need	both	pieces	of	information	again	a	little
later	on.

3

prevent_destroy

prevent_destroy	is	the	first	lifecycle	setting	you’ve	seen.	Every
Terraform	resource	supports	several	lifecycle	settings	that	configure
how	that	resource	is	created,	updated,	and/or	deleted.	When	you	set
prevent_destroy	to	true	on	a	resource,	any	attempt	to	delete
that	resource	(e.g.,	by	running	terraform	destroy)	will	cause
Terraform	to	exit	with	an	error.	This	is	a	good	way	to	prevent
accidental	deletion	of	an	important	resource,	such	as	this	S3	bucket,
which	will	store	all	of	your	Terraform	state.	Of	course,	if	you	really
mean	to	delete	it,	you	can	just	comment	that	setting	out.

versioning

This	block	enables	versioning	on	the	S3	bucket,	so	that	every	update	to
a	file	in	the	bucket	actually	creates	a	new	version	of	that	file.	This
allows	you	to	see	older	versions	of	the	file	and	revert	to	those	older
versions	at	any	time.

server_side_encryption_configuration

This	block	turns	server-side	encryption	on	by	default	for	all	data
written	to	this	S3	bucket.	This	ensures	that	your	state	files,	and	any
secrets	they	may	contain,	are	always	encrypted	on	disk	when	stored	in
S3.

Next,	you	need	to	create	a	DynamoDB	table	to	use	for	locking.
DynamoDB	is	Amazon’s	managed,	distributed	key-value	store.	It	supports
strongly-consistent	reads	and	conditional	writes,	which	are	all	the
ingredients	you	need	for	a	distributed	lock	system.	Moreover,	it’s
completely	managed,	so	you	don’t	have	any	infrastructure	to	run	yourself,
and	it’s	inexpensive,	with	most	Terraform	usage	easily	fitting	into	the	free
tier.

To	use	DynamoDB	for	locking	with	Terraform,	you	must	create	a
DynamoDB	table	that	has	a	primary	key	called	LockID	(with	this	exact

4

spelling	and	capitalization!).	You	can	create	such	a	table	using	the
aws_dynamodb_table	resource:

resource	"aws_dynamodb_table"	"terraform_locks"	{

		name									=	"terraform-up-and-running-locks"

		billing_mode	=	"PAY_PER_REQUEST"

		hash_key					=	"LockID"

		attribute	{

				name	=	"LockID"

				type	=	"S"

		}

}

Run	terraform	init	to	download	the	providers	for	this	module	and
then	run	terraform	apply	to	deploy	your	code.	Once	everything	is
deployed,	you	will	have	an	S3	bucket	and	DynamoDB	table,	but	your
Terraform	state	will	still	be	stored	locally.	To	configure	Terraform	to	store
the	state	in	your	S3	bucket	(with	encryption	and	locking),	you	need	to	add
a	backend	configuration	to	your	Terraform	code.	This	is	configuration
for	Terraform	itself,	so	it	lives	within	a	terraform	block,	and	has	the
following	syntax:

terraform	{

		backend	"<BACKEND_NAME>"	{

				[CONFIG...]

		}

}

Where	BACKEND_NAME	is	the	name	of	the	backend	you	want	to	use	(e.g.,
"s3")	and	CONFIG	consists	consists	of	one	or	more	arguments	that	are
specific	to	that	backend	(e.g.,	the	name	of	the	S3	bucket	to	use).	Here’s
what	the	backend	configuration	looks	like	for	an	S3	bucket:

terraform	{

		backend	"s3"	{

				#	Replace	this	with	your	bucket	name!

				bucket									=	"terraform-up-and-running-state"

				key												=	"global/s3/terraform.tfstate"

				region									=	"us-east-2"

				#	Replace	this	with	your	DynamoDB	table	name!

				dynamodb_table	=	"terraform-up-and-running-locks"

				encrypt								=	true

		}

}

Let’s	go	through	these	settings	one	at	a	time:

bucket

The	name	of	the	S3	bucket	to	use.	Make	sure	to	replace	this	with	the
name	of	the	S3	bucket	you	created	earlier!

key

The	file	path	within	the	S3	bucket	where	the	Terraform	state	file
should	be	written.	You’ll	see	a	little	later	on	why	the	example	code
above	sets	this	to	global/s3/terraform.tfstate.

region

The	AWS	region	where	the	S3	bucket	was	created.

dynamodb_table

The	DynamoDB	table	to	use	for	locking.	Make	sure	to	replace	this
with	the	name	of	the	DynamoDB	table	you	created	earlier!

encrypt

Setting	this	to	true	ensures	your	Terraform	state	will	be	encrypted	on
disk	when	stored	in	S3.	We	already	enabled	default	encryption	in	the
S3	bucket	itself,	so	this	here	as	a	second	layer	to	ensure	that	the	data	is
always	encrypted.

To	tell	Terraform	to	store	your	state	file	in	this	S3	bucket,	you’re	going	to
use	the	terraform	init	command	again.	This	little	command	can	not
only	download	provider	code,	but	also	configure	your	Terraform	backend
(and	you’ll	see	yet	another	use	later	on	too!).	Moreover,	the	init
command	is	idempotent,	so	it’s	safe	to	run	it	over	and	over	again:

$	terraform	init

Initializing	the	backend...

Acquiring	state	lock.	This	may	take	a	few	moments...

Do	you	want	to	copy	existing	state	to	the	new	backend?

		Pre-existing	state	was	found	while	migrating	the	

previous	"local"	backend	to	the

		newly	configured	"s3"	backend.	No	existing	state	was	

found	in	the	newly

		configured	"s3"	backend.	Do	you	want	to	copy	this	

state	to	the	new	"s3"

		backend?	Enter	"yes"	to	copy	and	"no"	to	start	with	an	

empty	state.

		Enter	a	value:

Terraform	will	automatically	detect	that	you	already	have	a	state	file
locally	and	prompt	you	to	copy	it	to	the	new	S3	backend.	If	you	type	in
“yes,”	you	should	see:

Successfully	configured	the	backend	"s3"!	Terraform	will	

automatically

use	this	backend	unless	the	backend	configuration	

changes.

After	running	this	command,	your	Terraform	state	will	be	stored	in	the	S3
bucket.	You	can	check	this	by	heading	over	to	the	S3	console	in	your
browser	and	clicking	your	bucket.	You	should	see	something	similar	to
Figure	3-1.

https://console.aws.amazon.com/s3/

Figure	3-1.	Terraform	state	file	stored	in	S3

With	this	backend	enabled,	Terraform	will	automatically	pull	the	latest
state	from	this	S3	bucket	before	running	a	command,	and	automatically
push	the	latest	state	to	the	S3	bucket	after	running	a	command.	To	see	this
in	action,	add	the	following	output	variables:

output	"s3_bucket_arn"	{

		value							=	aws_s3_bucket.terraform_state.arn

		description	=	"The	ARN	of	the	S3	bucket"

}

output	"dynamodb_table_name"	{

		value							=	aws_dynamodb_table.terraform_locks.name

		description	=	"The	name	of	the	DynamoDB	table"

}

These	variable	will	print	out	the	Amazon	Resource	Name	(ARN)	of	your
S3	bucket	and	the	name	of	your	DynamoDB	table.	Run	terraform
apply	to	see	it:

$	terraform	apply

Acquiring	state	lock.	This	may	take	a	few	moments...

aws_dynamodb_table.terraform_locks:	Refreshing	state...	

[id=terraform-up-and-running-locks]

aws_s3_bucket.terraform_state:	Refreshing	state...	

[id=terraform-up-and-running-state]

Apply	complete!	Resources:	0	added,	0	changed,	0	

destroyed.

Releasing	state	lock.	This	may	take	a	few	moments...

Outputs:

dynamodb_table_name	=	terraform-up-and-running-locks

s3_bucket_arn	=	arn:aws:s3:::terraform-up-and-running-

state

(Note	how	Terraform	is	now	acquiring	a	lock	before	running	apply	and
releasing	the	lock	after!)

Now,	head	over	to	the	S3	console	again,	refresh	the	page,	and	click	the
gray	“Show”	button	next	to	“Versions.”	You	should	now	see	several
versions	of	your	terraform.tfstate	file	in	the	S3	bucket,	as	shown	in
Figure	3-2.

https://console.aws.amazon.com/s3/

Figure	3-2.	Multiple	versions	of	the	Terraform	state	file	in	S3

This	means	that	Terraform	is	automatically	pushing	and	pulling	state	data
to	and	from	S3	and	S3	is	storing	every	revision	of	the	state	file,	which	can
be	useful	for	debugging	and	rolling	back	to	older	versions	if	something
goes	wrong.

Some	limitations	with	Terraform’s	backends
Terraform’s	backends	have	a	few	limitations	/	gotchas	to	be	aware	of.	The
first	limitation	is	the	chicken-and-egg	situation	of	using	Terraform	to
create	the	S3	bucket	where	you	want	to	store	your	Terraform	state.	To
make	this	work,	you	had	to	use	a	two-step	process:

1.	 Write	Terraform	code	to	create	the	S3	bucket	and	DynamoDB
table	and	deploy	that	code	with	a	local	backend.

2.	 Go	back	to	the	Terraform	code,	add	a	remote	backend
configuration	to	it	to	use	the	newly	created	S3	bucket	and
DynamoDB	table,	and	run	terraform	init	to	copy	your
local	state	to	S3.

If	you	ever	wanted	to	delete	the	S3	bucket	and	DynamoDB	table,	you’d
have	to	do	this	two-step	process	in	reverse:

1.	 Go	to	the	Terraform	code,	remove	the	backend	configuration,
and	re-run	terraform	init	to	copy	the	Terraform	state	back
to	your	local	disk.

2.	 Run	terraform	destroy	to	delete	the	S3	bucket	and
DynamoDB	table.

This	two-step	process	is	a	bit	awkward,	but	the	good	news	is	that	you	can
share	a	single	S3	bucket	and	DynamoDB	table	across	many	Terraform
modules,	so	you’ll	probably	only	have	to	do	it	once	(or	once	per	AWS
account	if	you	have	multiple	accounts)	Once	the	S3	bucket	exists,	in	the
rest	of	your	Terraform	code,	you	can	specify	the	backend	configuration
right	from	the	start	without	any	extra	steps.

The	second	limitation	is	more	painful:	the	backend	block	in	Terraform
does	not	allow	you	to	use	any	variables	or	references.	The	following	code
will	NOT	work:

#	This	will	NOT	work.	Variables	aren't	allowed	in	a	

backend	configuration.

terraform	{

		backend	"s3"	{

				bucket									=	"${var.bucket}"

				region									=	"${var.region}"

				dynamodb_table	=	"${var.dynamodb_table}"

				key												=	"example/terraform.tfstate"

				encrypt								=	true

		}

}

That	means	you	have	to	manually	copy	and	paste	the	S3	bucket	name,
region,	DynamoDB	table	name,	etc	into	every	one	of	your	Terraform

modules.	Even	worse,	you	have	to	very	carefully	not	copy	and	paste	the
key	value,	but	ensure	a	unique	key	for	every	Terraform	module	you
deploy	so	that	you	don’t	accidentally	overwrite	the	state	of	some	other
module!	This	need	to	do	lots	of	copy	/	paste	and	lots	of	manual	changes	is
error	prone,	especially	if	you	have	to	deploy	and	manage	many	Terraform
modules	across	many	environments.

The	only	solution	available	as	of	May,	2019,	is	to	take	advantage	of
partial	configuration,	where	you	omit	certain	parameters	from	the
backend	configuration	in	your	Terraform	code,	and	instead,	pass	those
in	via	-backend-config	command	line	arguments	when	calling
terraform	init.	For	example,	you	could	extract	the	repeated
backend	arguments,	such	as	bucket	and	region	into	a	separate	file
called	backend.hcl:

bucket									=	"terraform-up-and-running-state"

region									=	"us-east-2"

dynamodb_table	=	"terraform-up-and-running-locks"

encrypt								=	true

Only	the	key	parameter	remains	in	the	Terraform	code,	as	you	still	need
to	set	a	different	key	value	for	each	module:

#	Partial	configuration.	The	other	settings	(e.g.,	

bucket,	region)	will	be

#	passed	in	from	a	file	via	-backend-config	arguments	to	

'terraform	init'

terraform	{

		backend	"s3"	{

				key	=	"example/terraform.tfstate"

		}

}

To	put	all	your	partial	configurations	together,	run	terraform	init
with	the	-backend-config	argument:

$	terraform	init	-backend-config=backend.hcl

Terraform	will	merge	the	partial	config	in	backend.hcl	with	the	partial
config	in	your	Terraform	code	to	produce	the	full	configuration	used	by
your	module.

Another	option	is	to	use	Terragrunt,	an	open	source	tool	that	tries	to	fill	in
a	few	gaps	in	Terraform.	Terragrunt	can	help	you	keep	your	backend
configuration	DRY	by	defining	all	the	basic	backend	settings	(bucket
name,	region,	DynamoDB	table	name)	in	one	file	and	automatically
setting	the	key	argument	to	the	relative	folder	path	of	the	module.	Check
out	the	Terragurnt	documentation	for	the	details:
https://github.com/gruntwork-io/terragrunt

Isolating	State	Files
With	a	remote	backend	and	locking,	collaboration	is	no	longer	a	problem.
However,	there	is	still	one	more	problem	remaining:	isolation.	When	you
first	start	using	Terraform,	you	may	be	tempted	to	define	all	of	your
infrastructure	in	a	single	Terraform	file	or	a	single	set	of	Terraform	files	in
one	folder.	The	problem	with	this	approach	is	that	all	of	your	Terraform
state	is	now	stored	in	a	single	file,	too,	and	a	mistake	anywhere	could
break	everything.

For	example,	while	trying	to	deploy	a	new	version	of	your	app	in	staging,
you	might	break	the	app	in	production.	Or	worse	yet,	you	might	corrupt
your	entire	state	file,	either	because	you	didn’t	use	locking,	or	due	to	a	rare

https://github.com/gruntwork-io/terragrunt

Terraform	bug,	and	now	all	of	your	infrastructure	in	all	environments	is
broken.

The	whole	point	of	having	separate	environments	is	that	they	are	isolated
from	each	other,	so	if	you	are	managing	all	the	environments	from	a	single
set	of	Terraform	configurations,	you	are	breaking	that	isolation.	Just	as	a
ship	has	bulkheads	that	act	as	barriers	to	prevent	a	leak	in	one	part	of	the
ship	from	immediately	flooding	all	the	others,	you	should	have
“bulkheads”	built	into	your	Terraform	design,	as	shown	in	Figure	3-3.

Figure	3-3.	Instead	of	defining	all	your	environments	in	a	single	set	of	Terraform
configurations	(top),	you	want	to	define	each	environment	in	a	separate	set	of

configurations	(bottom),	so	a	problem	in	one	environment	is	completely	isolated	from
the	others.

5

There	are	two	ways	you	could	isolate	state	files:

1.	 Isolation	via	workspaces:	useful	for	quick,	isolated	tests	on	the
same	configuration.

2.	 Isolation	via	file	layout:	useful	for	production	use-cases	where
you	need	strong	separation	between	environments.

Let’s	dive	into	each	of	these	in	the	next	two	sections.

Isolation	via	workspaces
Terraform	workspaces	allow	you	to	store	your	Terraform	state	in	multiple,
separate,	named	workspaces.	Terraform	starts	with	a	single	workspace
called	“default”	and	if	you	neve	explicitly	specify	a	workspace,	then	the
default	workspace	is	the	one	you’ll	use	the	entire	time.	To	create	a	new
workspace	or	switch	between	workspaces,	you	use	the	terraform
workspace	commands.	Let’s	experiment	with	workspaces	on	a
standalone	module	that	deploys	a	single	EC2	Instance:

resource	"aws_instance"	"example"	{

		ami											=	"ami-0c55b159cbfafe1f0"

		instance_type	=	"t2.micro"

}

Configure	a	backend	for	this	instance	using	the	S3	bucket	and	DynamoDB
table	you	created	earlier	in	the	chapter,	but	with	a	the	key	value	set	to
workspaces-example/terraform.tfstate:

terraform	{

		backend	"s3"	{

				#	Replace	this	with	your	bucket	name!

				bucket									=	"terraform-up-and-running-state"

				key												=	"workspaces-

example/terraform.tfstate"

				region									=	"us-east-2"

				#	Replace	this	with	your	DynamoDB	table	name!

				dynamodb_table	=	"terraform-up-and-running-locks"

				encrypt								=	true

		}

}

Run	terraform	init	and	terraform	apply	to	deploy	this
module:

$	terraform	init

Initializing	the	backend...

Successfully	configured	the	backend	"s3"!	Terraform	will	

automatically

use	this	backend	unless	the	backend	configuration	

changes.

Initializing	provider	plugins...

(...)

Terraform	has	been	successfully	initialized!

$	terraform	apply

(...)

Apply	complete!	Resources:	1	added,	0	changed,	0	

destroyed.

The	state	for	this	deployment	is	stored	in	the	default	workspace.	You	can
confirm	this	by	running	the	terraform	workspace	show
command,	which	will	tell	you	which	workspace	you’re	currently	in:

$	terraform	workspace	show

default

The	default	workspace	stores	your	state	in	exactly	the	location	you	specify
via	the	key	configuration.	As	shown	in	Figure	3-4,	if	you	take	a	look	in
your	S3	bucket,	you’ll	find	a	terraform.tfstate	file	in	the
workspaces-example	folder.

Figure	3-4.	The	S3	bucket	after	the	state	was	stored	in	the	default	workspace

Let’s	create	a	new	workspace	called	“example1”	using	the	terraform
workspace	new	command:

$	terraform	workspace	new	example1

Created	and	switched	to	workspace	"example1"!

You're	now	on	a	new,	empty	workspace.	Workspaces	isolate	

their	state,

so	if	you	run	"terraform	plan"	Terraform	will	not	see	

any	existing	state

for	this	configuration.

Now,	note	what	happens	if	you	try	to	run	terraform	plan	(the	log
output	below	is	truncated	for	readability):

$	terraform	plan

Terraform	will	perform	the	following	actions:

		#	aws_instance.example	will	be	created

		+	resource	"aws_instance"	"example"	{

						+	ami																										=	"ami-

0c55b159cbfafe1f0"

						+	instance_type																=	"t2.micro"

						(...)

				}

Plan:	1	to	add,	0	to	change,	0	to	destroy.

Terraform	wants	to	create	a	totally	new	EC2	Instance	from	scratch!	That’s
because	the	state	files	in	each	workspace	are	isolated	from	each	other,	and
as	you’re	now	in	the	example1	workspace,	Terraform	isn’t	using	the	state
file	from	the	default	workspace,	and	therefore,	doesn’t	see	the	EC2
Instance	was	already	created	there.

Try	running	terraform	apply	to	deploy	this	second	EC2	Instance	in
the	new	workspace:

$	terraform	apply

(...)

Apply	complete!	Resources:	1	added,	0	changed,	0	

destroyed.

Let’s	repeat	the	exercise	one	more	time	and	create	another	workspace
called	“example2”:

$	terraform	workspace	new	example2

Created	and	switched	to	workspace	"example2"!

You're	now	on	a	new,	empty	workspace.	Workspaces	isolate	

their	state,

so	if	you	run	"terraform	plan"	Terraform	will	not	see	

any	existing	state

for	this	configuration.

And	run	terraform	apply	once	again	to	deploy	a	third	EC2	Instance:

$	terraform	apply

(...)

Apply	complete!	Resources:	1	added,	0	changed,	0	

destroyed.

You	now	have	three	workspaces	available,	which	you	can	see	with	the
terraform	workspace	list	command:

$	terraform	workspace	list

		default

		example1

*	example2

And	you	can	switch	between	them	at	any	time	using	the	terraform
workspace	select	command:

$	terraform	workspace	select	example1

Switched	to	workspace	"example1".

To	understand	how	this	works	under	the	hood,	take	a	look	again	in	your
S3	bucket,	and	you	should	now	see	a	new	folder	called	env:,	as	shown	in
Figure	3-5.

Figure	3-5.	The	S3	bucket	after	you’ve	started	using	custom	workspaces

Inside	the	env:	folder,	you’ll	find	one	folder	for	each	of	your
workspaces,	as	shown	in	Figure	3-6.

Figure	3-6.	Terraform	creates	one	folder	per	workspace

Inside	each	of	those	workspaces,	Terraform	uses	the	key	you	specified	in
your	backend	configuration,	so	you	should	find	an
example1/workspaces-example/terraform.tfstate	and	a
example2/workspaces-example/terraform.tfstate.	In
other	words,	switching	to	a	different	workspace	is	equivalent	to	changing
the	path	where	your	state	file	is	stored.

This	is	handy	when	you	already	have	a	Terraform	module	deployed,	and
you	want	to	do	some	experiments	with	it	(e.g.,	try	to	refactor	the	code),
but	you	don’t	want	your	experiments	to	affect	the	state	of	the	already
deployed	infrastructure.	Terraform	workspaces	allow	you	to	run
terraform	workspace	new	and	deploy	a	new	copy	of	the	exact
same	infrastructure,	but	storing	the	state	in	a	separate	file.

In	fact,	you	can	even	change	how	that	module	behaves	based	on	the
workspace	you’re	in	by	reading	the	workspace	name	using	the	expression

terraform.workspace.	For	example,	here’s	how	to	change	set	the
instance	type	to	t2.medium	in	the	default	workspace	and	t2.micro	in
all	other	workspaces	(to	save	money	when	experimenting):

resource	"aws_instance"	"example"	{

		ami											=	"ami-0c55b159cbfafe1f0"

		instance_type	=	terraform.workspace	==	"default"	?	

"t2.medium"	:	"t2.micro"

}

Terraform	workspaces	can	be	a	great	way	to	quickly	spin	up	and	tear
down	different	versions	of	your	code,	but	they	have	a	few	drawbacks:

1.	 The	state	files	for	all	of	your	workspaces	are	stored	in	the	same
backend	(e.g.,	the	same	S3	bucket).	That	means	you	use	the	same
authentication	and	access	controls	for	all	the	workspaces,	which
is	one	major	reason	workspaces	are	an	unsuitable	mechanism	for
isolating	environments	(e.g.,	isolating	stage	from	prod).

2.	 Workspaces	are	not	visible	in	the	code	or	on	the	terminal	unless
you	run	terraform	workspace	commands.	When	browsing
the	code,	a	module	that	has	been	deployed	in	one	workspace
looks	exactly	the	same	as	a	module	deployed	in	ten	workspaces.
This	makes	maintenance	harder,	as	you	don’t	have	a	good	picture
of	your	infrastructure.

3.	 Putting	the	two	previous	items	together,	the	result	is	that
workspaces	can	be	fairly	error	prone.	The	lack	of	visibility	makes
it	easy	to	forget	what	workspace	you’re	in	and	accidentally	make
changes	in	the	wrong	one	(e.g.,	accidentally	running
terraform	destroy	in	a	“production”	workspace	rather	than
a	“staging”	workspace),	and	since	you	have	to	use	the	same
authentication	mechanism	for	all	workspaces,	you	have	no	other
layers	of	defense	to	protect	against	such	errors.

To	get	proper	isolation	between	environments,	instead	of	workspaces,

you’ll	most	likely	want	to	use	the	file	layout,	which	is	the	topic	of	the	next
section.	But	before	moving	on,	make	sure	to	clean	up	the	three	EC2
Instances	you	just	deployed	by	running	terraform	workspace
select	<name>	and	terraform	destroy	in	each	of	the	three
workspaces!

Isolation	via	file	layout
To	get	full	isolation	between	environments,	you	need	to:

1.	 Put	the	Terraform	configuration	files	for	each	environment	into	a
separate	folder.	For	example,	all	the	configurations	for	the	staging
environment	can	be	in	a	folder	called	stage	and	all	the
configurations	for	the	production	environment	can	be	in	a	folder
called	prod.

2.	 Configure	a	different	backend	for	each	environment,	using
different	authentication	mechanisms	and	access	controls	(e.g.,
each	environment	could	live	in	a	separate	AWS	account	with	a
separate	S3	bucket	as	a	backend).

With	this	approach,	the	use	of	separate	folders	makes	it	much	clearer
which	environments	you’re	deploy	to,	and	the	use	of	separate	state	files,
with	separate	authentication	mechanisms,	makes	it	significantly	less	likely
that	a	screw	up	in	one	environment	can	have	any	impact	on	another.

In	fact,	you	may	want	to	take	the	isolation	concept	beyond	environments
and	down	to	the	“component”	level,	where	a	component	is	a	coherent	set
of	resources	that	you	typically	deploy	together.	For	example,	once	you’ve
set	up	the	basic	network	topology	for	your	infrastructure—in	AWS	lingo,
your	Virtual	Private	Cloud	(VPC)	and	all	the	associated	subnets,	routing
rules,	VPNs,	and	network	ACLs—you	will	probably	only	change	it	once
every	few	months,	at	most.	On	the	other	hand,	you	may	deploy	a	new

version	of	a	web	server	multiple	times	per	day.	If	you	manage	the
infrastructure	for	both	the	VPC	component	and	the	web	server	component
in	the	same	set	of	Terraform	configurations,	you	are	unnecessarily	putting
your	entire	network	topology	at	risk	of	breakage	(e.g.,	from	a	simple	typo
in	the	code	or	someone	accidentally	running	the	wrong	command)
multiple	times	per	day.

Therefore,	I	recommend	using	separate	Terraform	folders	(and	therefore
separate	state	files)	for	each	environment	(staging,	production,	etc.)	and
for	each	component	(vpc,	services,	databases).	To	see	what	this	looks	like
in	practice,	let’s	go	through	the	recommended	file	layout	for	Terraform
projects.

Figure	3-7	shows	the	file	layout	for	my	typical	Terraform	project.

Figure	3-7.	Typical	file	layout	for	a	Terraform	project

At	the	top	level,	there	are	separate	folders	for	each	“environment.”	The
exact	environments	differ	for	every	project,	but	the	typical	ones	are:

stage

An	environment	for	nonproduction	workloads	(i.e.,	testing).

prod

An	environment	for	production	workloads	(i.e.,	user-facing	apps).

mgmt

An	environment	for	DevOps	tooling	(e.g.,	bastion	host,	Jenkins).

global

A	place	to	put	resources	that	are	used	across	all	environments	(e.g.,	S3,
IAM).

Within	each	environment,	there	are	separate	folders	for	each
“component.”	The	components	differ	for	every	project,	but	the	typical
ones	are:

vpc

The	network	topology	for	this	environment.

services

The	apps	or	microservices	to	run	in	this	environment,	such	as	a	Ruby
on	Rails	frontend	or	a	Scala	backend.	Each	app	could	even	live	in	its
own	folder	to	isolate	it	from	all	the	other	apps.

data-storage

The	data	stores	to	run	in	this	environment,	such	as	MySQL	or	Redis.
Each	data	store	could	even	live	in	its	own	folder	to	isolate	it	from	all
other	data	stores.

Within	each	component,	there	are	the	actual	Terraform	configuration	files,
which	are	organized	according	to	the	following	naming	conventions:

variables.tf

Input	variables.

outputs.tf

Output	variables.

main.tf

The	actual	resources.

When	you	run	Terraform,	it	simply	looks	for	files	in	the	current	directory
with	the	.tf	extension,	so	you	can	use	whatever	filenames	you	want.
However,	while	Terraform	may	not	care	about	file	names,	your	teammates
probably	do.	Using	a	consistent,	predictable	naming	convention	makes
your	code	easier	to	browse,	as	you’ll	always	know	where	to	look	to	find	a
variable,	output,	or	resource.	If	individual	Terraform	files	are	becoming
massive—especially	main.tf—it’s	OK	to	break	out	certain	functionality
into	separate	files	(e.g.,	iam.tf,	s3.tf,	database.tf),	but	that	may	also	be	a
sign	that	you	should	break	your	code	into	smaller	modules	instead,	a	topic
I’ll	dive	into	in	Chapter	4.

AVOIDING	COPY/PASTE
The	file	layout	described	in	this	section	has	a	lot	of	duplication.	For
example,	the	same	frontend-app	and	backend-app	live	in	both	the
stage	and	prod	folders.	Don’t	worry,	you	won’t	need	to	copy/paste	all	of
that	code!	In	Chapter	4,	you’ll	see	how	to	use	Terraform	modules	to	keep	all
of	this	code	DRY.

Let’s	take	the	web	server	cluster	code	you	wrote	in	Chapter	2,	plus	the	S3
and	DynamoDB	code	you	wrote	in	this	chapter,	and	rearrange	it	using	the
folder	structure	in	Figure	3-8.

Figure	3-8.	File	layout	for	the	web	server	cluster	code

The	S3	bucket	you	created	in	this	chapter	should	be	moved	into	the
global/s3	folder.	Move	the	output	variables	(s3_bucket_arn	and
dynamodb_table_name)	into	outputs.tf.	When	moving	the	folder,
make	sure	you	don’t	miss	the	(hidden)	.terraform	folder	when	copying
files	to	the	new	location	so	you	don’t	have	to	re-initialize	everything.

The	web	server	cluster	you	created	in	Chapter	2	should	be	moved	into

stage/services/webserver-cluster	(think	of	this	as	the	“testing”	or	“staging”
version	of	that	web	server	cluster;	you’ll	add	a	“production”	version	in	the
next	chapter).	Again,	make	sure	to	copy	over	the	.terraform	folder,	move
input	variables	into	variables.tf,	and	output	variables	into	outputs.tf.

You	should	also	update	the	web	server	cluster	to	use	S3	as	a	backend.
You	can	copy	and	paste	the	backend	config	from
global/s3/main.tf	more	or	less	verbatim,	but	make	sure	to	change
the	key	to	the	same	folder	path	as	the	web	server	Terraform	code:
stage/services/webserver-cluster/terraform.tfstate.	This	gives	you	a	1:1
mapping	between	the	layout	of	your	Terraform	code	in	version	control	and
your	Terraform	state	files	in	S3,	so	it’s	obvious	how	the	two	are
connected.	The	s3	module	already	sets	the	key	using	this	convention.

This	file	layout	makes	it	easy	to	browse	the	code	and	understand	exactly
what	components	are	deployed	in	each	environment.	It	also	provides	a
good	amount	of	isolation	between	environments	and	between	components
within	an	environment,	ensuring	that	if	something	goes	wrong,	the	damage
is	contained	as	much	as	possible	to	just	one	small	part	of	your	entire
infrastructure.

Of	course,	this	very	same	property	is,	in	some	ways,	a	drawback,	too:
splitting	components	into	separate	folders	prevents	you	from	accidentally
blowing	up	your	entire	infrastructure	in	one	command,	but	it	also	prevents
you	from	creating	your	entire	infrastructure	in	one	command.	If	all	of	the
components	for	a	single	environment	were	defined	in	a	single	Terraform
configuration,	you	could	spin	up	an	entire	environment	with	a	single	call
to	terraform	apply.	But	if	all	the	components	are	in	separate	folders,
then	you	need	to	run	terraform	apply	separately	in	each	one	(note
that	if	you’re	using	Terragrunt,	you	can	automate	this	process	using	the

6

apply-all	command).

There	is	another	problem	with	this	file	layout:	it	makes	it	harder	to	use
resource	dependencies.	If	your	app	code	was	defined	in	the	same
Terraform	configuration	files	as	the	database	code,	then	that	app	could
directly	access	attributes	of	the	database	(e.g.,	the	database	address	and
port)	using	an	attribute	reference	(e.g.,
aws_db_instance.foo.address).	But	if	the	app	code	and
database	code	live	in	different	folders,	as	I’ve	recommended,	you	can	no
longer	do	that.	Fortunately,	Terraform	offers	a	solution:	the
terraform_remote_state	data	source.

The	terraform_remote_state	data	source
In	Chapter	2,	you	used	data	sources	to	fetch	read-only	information	from
AWS,	such	as	the	aws_subnet_ids	data	source,	which	returns	a	list	of
subnets	in	your	VPC.	There	is	another	data	source	that	is	particularly
useful	when	working	with	state:	terraform_remote_state.	You
can	use	this	data	source	to	fetch	the	Terraform	state	file	stored	by	another
set	of	Terraform	configurations	in	a	completely	read-only	manner.

Let’s	go	through	an	example.	Imagine	that	your	web	server	cluster	needs
to	talk	to	a	MySQL	database.	Running	a	database	that	is	scalable,	secure,
durable,	and	highly	available	is	a	lot	of	work.	Once	again,	you	can	let
AWS	take	care	of	it	for	you,	this	time	by	using	the	Relational	Database
Service	(RDS),	as	shown	in	Figure	3-9.	RDS	supports	a	variety	of
databases,	including	MySQL,	PostgreSQL,	SQL	Server,	and	Oracle.

6

Figure	3-9.	The	web	server	cluster	talks	to	MySQL,	which	is	deployed	on	top	of
Amazon’s	Relational	Database	Service

You	may	not	want	to	define	the	MySQL	database	in	the	same	set	of
configuration	files	as	the	web	server	cluster,	as	you’ll	be	deploying
updates	to	the	web	server	cluster	far	more	frequently	and	don’t	want	to
risk	accidentally	breaking	the	database	each	time	you	do	so.	Therefore,
your	first	step	should	be	to	create	a	new	folder	at	stage/data-stores/mysql
and	create	the	basic	Terraform	files	(main.tf,	variables.tf,	outputs.tf)	within
it,	as	shown	in	Figure	3-10.

Next,	create	the	database	resources	in	stage/data-stores/mysql/main.tf:

provider	"aws"	{

		region	=	"us-east-2"

}

resource	"aws_db_instance"	"example"	{

		identifier_prefix			=	"terraform-up-and-running"

		engine														=	"mysql"

		allocated_storage			=	10

		instance_class						=	"db.t2.micro"

		name																=	"example_database"

		username												=	"admin"

		#	How	should	we	set	the	password?

		password												=	"???"

}

Figure	3-10.	Create	the	database	code	in	the	stage/data-stores	folder

At	the	top	of	the	file,	you	see	the	typical	provider	resource,	but	just

below	that	is	a	new	resource:	aws_db_instance.	This	resource	creates
a	database	in	RDS.	The	settings	in	this	code	configure	RDS	to	run	MySQL
with	10GB	of	storage	on	a	db.t2.micro	instance,	which	has	1	virtual
CPU,	1GB	of	memory,	and	is	part	of	the	AWS	free	tier.

Note	that	one	of	the	parameters	you	have	to	pass	to	the
aws_db_instance	resource	is	the	master	password	to	use	for	the
database.	Since	this	is	a	secret,	you	should	not	put	it	directly	into	your
code	in	plaintext!	Instead,	there	are	two	better	options	for	passing	secrets
to	Terraform	resources.

One	option	for	handling	secrets	is	to	use	a	Terraform	data	source	to	read
the	secrets	from	a	secret	store.	For	example,	you	can	store	secrets,	such	as
database	passwords,	in	AWS	Secrets	Manager,	a	managed	service	AWS
offers	specifically	for	storing	sensitive	data.	You	could	use	the	AWS
Secrets	Manager	UI	to	store	the	secret	and	then	read	the	secret	back	out	in
your	Terraform	code	using	the
aws_secretsmanager_secret_version	data	source:

provider	"aws"	{

		region	=	"us-east-2"

}

resource	"aws_db_instance"	"example"	{

		identifier_prefix			=	"terraform-up-and-running"

		engine														=	"mysql"

		allocated_storage			=	10

		instance_class						=	"db.t2.micro"

		name																=	"example_database"

		username												=	"admin"

		password												=

				

data.aws_secretsmanager_secret_version.db_password.secre

t_string

}

data	"aws_secretsmanager_secret_version"	"db_password"	{

		secret_id	=	"mysql-master-password-stage"

}

Some	of	the	supported	secret	stores	and	data	source	combos	you	could
look	into	are:

1.	 AWS	Secrets	Manager	and	the
aws_secretsmanager_secret_version	data	source
(shown	above).

2.	 AWS	Systems	Manager	Parameter	Store	and	the
aws_ssm_parameter	data	source.

3.	 AWS	KMS	and	the	aws_kms_secrets	data	source.

4.	 Google	Cloud	KMS	and	the	google_kms_secret	data
source.

5.	 Azure	Key	Vault	and	the	azurerm_key_vault_secret
data	source.

6.	 HashiCorp	Vault	and	the	vault_generic_secret	data
source.

The	second	option	for	handling	secrets	is	to	manage	them	completely
outside	of	Terraform	(e.g.,	in	a	password	manager	such	as	1Password,
LastPass,	or	OS	X	Keychain)	and	to	pass	the	secret	into	Terraform	via	an
environment	variable.	To	do	that,	declare	a	variable	called
db_password	in	stage/data-stores/mysql/variables.tf:

variable	"db_password"	{

		description	=	"The	password	for	the	database"

		type								=	string

}

Note	that	this	variable	does	not	have	a	default.	This	is	intentional.	You
should	not	store	your	database	password	or	any	sensitive	information	in
plain	text.	Instead,	you’ll	set	this	variable	using	an	environment	variable.

As	a	reminder,	for	each	input	variable	foo	defined	in	your	Terraform
configurations,	you	can	provide	Terraform	the	value	of	this	variable	using
the	environment	variable	TF_VAR_foo.	For	the	db_password	input
variable,	here	is	how	you	can	set	the	TF_VAR_db_password
environment	variable	on	Linux/Unix/OS	X	systems	(note	there	is	a	space
before	the	export	command	to	prevent	the	secret	from	being	stored	in
Bash	history):

$		export	TF_VAR_db_password="(YOUR_DB_PASSWORD)"

$	terraform	apply

(...)

SECRETS	ARE	ALWAYS	STORED	IN	TERRAFORM
STATE

Reading	secrets	from	a	secrets	store	or	environment	variables	is	a	good
practice	to	ensure	secrets	aren’t	stored	in	plaintext	in	your	code,	but	just	a
reminder:	no	matter	how	you	read	in	the	secret,	if	you	pass	it	as	an	argument
to	a	Terraform	resource,	such	as	aws_db_instance,	that	secret	will	be
stored	in	the	Terraform	state	file,	in	plain	text.

This	is	a	known	weakness	of	Terraform,	with	no	effective	solutions
available,	so	be	extra	paranoid	with	how	you	store	your	state	files	(e.g.,
always	enable	encryption)	and	who	can	access	those	state	files	(e.g.,	use
IAM	permissions	to	lock	down	access	to	your	S3	bucket)!

7

Now	that	you’ve	configured	the	password,	the	next	step	is	to	configure
this	module	to	store	its	state	in	the	S3	bucket	you	created	earlier	at	the
path	stage/data-stores/mysql/terraform.tfstate:

terraform	{

		backend	"s3"	{

				#	Replace	this	with	your	bucket	name!

				bucket									=	"terraform-up-and-running-state"

				key												=	"stage/data-

stores/mysql/terraform.tfstate"

				region									=	"us-east-2"

				#	Replace	this	with	your	DynamoDB	table	name!

				dynamodb_table	=	"terraform-up-and-running-locks"

				encrypt								=	true

		}

}

Run	terraform	apply	to	create	the	database.	Note	that	RDS	can	take
~10	minutes	to	provision	even	a	small	database,	so	be	patient!

Now	that	you	have	a	database,	how	do	you	provide	its	address	and	port	to
your	web	server	cluster?	The	first	step	is	to	add	two	output	variables	to
stage/data-stores/mysql/outputs.tf:

output	"address"	{

		value							=	aws_db_instance.example.address

		description	=	"Connect	to	the	database	at	this	

endpoint"

}

output	"port"	{

		value							=	aws_db_instance.example.port

		description	=	"The	port	the	database	is	listening	on"

}

Run	terraform	apply	one	more	time	and	you	should	see	the	outputs
in	the	terminal:

$	terraform	apply

(...)

Apply	complete!	Resources:	0	added,	0	changed,	0	

destroyed.

Outputs:

address	=	tf-2016111123.cowu6mts6srx.us-east-

2.rds.amazonaws.com

port	=	3306

These	outputs	are	now	also	stored	in	the	Terraform	state	for	the	database,
which	is	in	your	S3	bucket	at	the	path	stage/data-
stores/mysql/terraform.tfstate.	You	can	get	the	web	server	cluster	code	to
read	the	data	from	this	state	file	by	adding	the
terraform_remote_state	data	source	in	stage/services/webserver-
cluster/main.tf:

data	"terraform_remote_state"	"db"	{

		backend	=	"s3"

		config	=	{

				bucket	=	"(YOUR_BUCKET_NAME)"

				key				=	"stage/data-stores/mysql/terraform.tfstate"

				region	=	"us-east-2"

		}

}

This	terraform_remote_state	data	source	configures	the	web
server	cluster	code	to	read	the	state	file	from	the	same	S3	bucket	and
folder	where	the	database	stores	its	state,	as	shown	in	Figure	3-11.

Figure	3-11.	The	database	writes	its	state	to	an	S3	bucket	(top)	and	the	web	server
cluster	reads	that	state	from	the	same	bucket	(bottom)

It’s	important	to	understand	that,	like	all	Terraform	data	sources,	the	data
returned	by	terraform_remote_state	is	read-only.	Nothing	you	do
in	your	web	server	cluster	Terraform	code	can	modify	that	state,	so	you
can	pull	in	the	database’s	state	data	with	no	risk	of	causing	any	problems
in	the	database	itself.

All	the	database’s	output	variables	are	stored	in	the	state	file	and	you	can
read	them	from	the	terraform_remote_state	data	source	using	an
attribute	reference	of	the	form:

data.terraform_remote_state.<NAME>.outputs.<ATTRIBUTE>

For	example,	here	is	how	you	can	update	the	User	Data	of	the	web	server
cluster	instances	to	pull	the	database	address	and	port	out	of	the
terraform_remote_state	data	source	and	expose	that	information
in	the	HTTP	response:

user_data	=	<<EOF

#!/bin/bash

echo	"Hello,	World"	>>	index.html

echo	"${data.terraform_remote_state.db.outputs.address}"	

>>	index.html

echo	"${data.terraform_remote_state.db.outputs.port}"	>>	

index.html

nohup	busybox	httpd	-f	-p	${var.server_port}	&

EOF

As	the	User	Data	script	is	getting	longer,	defining	it	inline	is	getting
messier	and	messier.	In	general,	embedding	one	programming	language
(Bash)	inside	another	(Terraform)	makes	it	harder	to	maintain	each	one,	so
let’s	pause	here	for	a	moment	to	externalize	the	Bash	script.	To	do	that,
you	can	use	the	file	built-in	function	and	the	template_file	data
source.	Let’s	talk	about	these	one	at	a	time.

Terraform	includes	a	number	of	built-in	function	that	you	can	execute
using	an	expression	of	the	form:

function_name(...)

For	example,	consider	the	format	function:

format(<FMT>,	<ARGS>,	...)

This	function	formats	the	arguments	in	ARGS	according	to	the	sprintf
syntax	in	the	string	FMT. 	A	great	way	to	experiment	with	built-in
functions	is	to	run	the	terraform	console	command	to	get	an
interactive	console	where	you	can	try	out	different	Terraform	syntax,
query	the	state	of	your	infrastructure,	and	see	the	results	instantly:

terraform	console

$	format("%.3f",	3.14159265359)

3.142

Note	that	the	Terraform	console	is	read-only,	so	you	don’t	have	to	worry
about	accidentally	changing	infrastructure	or	state!

There	are	a	number	of	other	built-in	functions	that	can	be	used	to
manipulate	strings,	numbers,	lists,	and	maps. 	One	of	them	is	the	file
function:

file(<PATH>)

This	function	reads	the	file	at	PATH	and	returns	its	contents	as	a	string.
For	example,	you	could	put	your	User	Data	script	into
stage/services/webserver-cluster/user-data.sh	and	load	its	contents	as	a
string	as	follows:

file("user-data.sh")

The	catch	is	that	the	User	Data	script	for	the	web	server	cluster	needs
some	dynamic	data	from	Terraform,	including	the	server	port,	database
address,	and	database	port.	When	the	User	Data	script	was	embedded	in

8

9

the	Terraform	code,	you	used	Terraform	references	and	interpolation	to
fill	in	these	values.	This	does	not	work	with	the	file	function.	However,
it	does	work	if	you	use	a	template_file	data	source.

The	template_file	data	source	has	two	arguments:	template,
which	is	a	string	to	render,	and	vars,	which	is	a	map	of	variables	to	make
available	while	rendering.	It	has	one	output	attribute	called	rendered,
which	is	the	result	of	rendering	template,	including	any	interpolation
syntax	in	template,	with	the	variables	available	in	vars.	To	see	this	in
action,	add	the	following	template_file	data	source	to
stage/services/webserver-cluster/main.tf:

data	"template_file"	"user_data"	{

		template	=	file("user-data.sh")

		vars	=	{

				server_port	=	var.server_port

				db_address		=	

data.terraform_remote_state.db.outputs.address

				db_port					=	

data.terraform_remote_state.db.outputs.port

		}

}

You	can	see	that	this	code	sets	the	template	parameter	to	the	contents
of	the	user-data.sh	script	and	the	vars	parameter	to	the	three	variables
the	User	Data	script	needs:	the	server	port,	database	address,	and	database
port.	To	use	these	variables,	you’ll	need	to	update
stage/services/webserver-cluster/user-data.sh	script	as	follows:

#!/bin/bash

cat	>	index.html	<<EOF

<h1>Hello,	World</h1>

<p>DB	address:	${db_address}</p>

<p>DB	port:	${db_port}</p>

EOF

nohup	busybox	httpd	-f	-p	${server_port}	&

Note	that	this	Bash	script	has	a	few	changes	from	the	original:

It	looks	up	variables	using	Terraform’s	standard	interpolation
syntax,	but	the	only	available	variables	are	the	ones	in	the	vars
map	of	the	template_file	data	source.	Note	that	you	don’t
need	any	prefix	to	access	those	variables:	e.g.,	you	should	use
server_port	and	not	var.server_port.

The	script	now	includes	some	HTML	syntax	(e.g.,	<h1>)	to
make	the	output	a	bit	more	readable	in	a	web	browser.

A	NOTE	ON	EXTERNALIZED	FILES
One	of	the	benefits	of	extracting	the	User	Data	script	into	its	own	file	is	that
you	can	write	unit	tests	for	it.	The	test	code	can	even	fill	in	the	interpolated
variables	by	using	environment	variables,	since	the	Bash	syntax	for	looking
up	environment	variables	is	the	same	as	Terraform’s	interpolation	syntax.
For	example,	you	could	write	an	automated	test	for	user-data.sh	along	the
following	lines:

export	db_address=12.34.56.78

export	db_port=5555

export	server_port=8888

./user-data.sh

output=$(curl	"http://localhost:$server_port")

if	[[$output	==	*"Hello,	World"*]];	then

		echo	"Success!	Got	expected	text	from	server."

else

		echo	"Error.	Did	not	get	back	expected	text	'Hello,	

World'."

fi

The	final	step	is	to	update	the	user_data	parameter	of	the
aws_launch_configuration	resource	to	point	to	the	rendered
output	attribute	of	the	template_file	data	source:

resource	"aws_launch_configuration"	"example"	{

		image_id								=	"ami-0c55b159cbfafe1f0"

		instance_type			=	"t2.micro"

		security_groups	=	[aws_security_group.instance.id]

		user_data							=	

data.template_file.user_data.rendered

}

Ah,	that’s	much	cleaner	than	writing	Bash	scripts	inline!

If	you	deploy	this	cluster	using	terraform	apply,	wait	for	the
Instances	to	register	in	the	ALB,	and	open	the	ALB	URL	in	a	web
browser,	you’ll	see	something	similar	to	Figure	3-12.

Yay,	your	web	server	cluster	can	now	programmatically	access	the
database	address	and	port	via	Terraform!	If	you	were	using	a	real	web
framework	(e.g.,	Ruby	on	Rails),	you	could	set	the	address	and	port	as
environment	variables	or	write	them	to	a	config	file	so	they	could	be	used
by	your	database	library	(e.g.,	ActiveRecord)	to	talk	to	the	database.

Figure	3-12.	The	web	server	cluster	can	programmatically	access	the	database	address
and	port

Conclusion
The	reason	you	need	to	put	so	much	thought	into	isolation,	locking,	and
state	is	that	infrastructure	as	code	(IAC)	has	different	trade-offs	than
normal	coding.	When	you’re	writing	code	for	a	typical	app,	most	bugs	are
relatively	minor	and	only	break	a	small	part	of	a	single	app.	When	you’re
writing	code	that	controls	your	infrastructure,	bugs	tend	to	be	more	severe,
as	they	can	break	all	of	your	apps—and	all	of	your	data	stores	and	your
entire	network	topology	and	just	about	everything	else.	Therefore,	I
recommend	including	more	“safety	mechanisms”	when	working	on	IAC
than	with	typical	code.

A	common	concern	of	using	the	recommended	file	layout	is	that	it	leads	to
code	duplication.	If	you	want	to	run	the	web	server	cluster	in	both	staging
and	production,	how	do	you	avoid	having	to	copy	and	paste	a	lot	of	code
between	stage/services/webserver-cluster	and	prod/services/webserver-
cluster?	The	answer	is	that	you	need	to	use	Terraform	modules,	which	are
the	main	topic	of	Chapter	4.

10

1
	Learn	more	about	S3’s	guarantees	here:
https://aws.amazon.com/s3/details/#durability.

2
	See	pricing	information	for	S3	here:	https://aws.amazon.com/s3/pricing/.

3
	See	here	for	more	information	on	S3	bucket	names:	http://bit.ly/2b1s7eh.

4
	See	pricing	information	for	DynamoDB	here:
https://aws.amazon.com/dynamodb/pricing/

5
	For	a	colorful	example	of	what	happens	when	you	don’t	isolate	Terraform	state,
see:	http://bit.ly/2lTsewM.

6
	For	more	information,	see	Terragrunt’s	documentation.

7
	In	most	Linux/Unix/OS	X	shells,	every	command	you	type	gets	stored	in	some
sort	of	history	file	(e.g.,	~/.bash_history).	If	you	start	your	command	with
a	space,	then	most	shells	will	skip	writing	that	command	to	the	history	file.	Note
that	you	may	need	to	set	the	HISTCONTROL	environment	variable	to
“ignoreboth”	to	enable	this	if	your	shell	doesn’t	enable	it	by	default.

8
	You	can	find	documentation	for	the	sprintf	syntax	here:
https://golang.org/pkg/fmt/.

9
	You	can	find	the	full	list	of	built-in	functions	here:
https://www.terraform.io/docs/configuration/functions.html.

10
	For	more	information	on	software	safety	mechanisms,	see
http://www.ybrikman.com/writing/2016/02/14/agility-requires-safety/.

https://aws.amazon.com/s3/details/#durability
https://aws.amazon.com/s3/pricing/
http://bit.ly/2b1s7eh
https://aws.amazon.com/dynamodb/pricing/
http://bit.ly/2lTsewM
https://github.com/gruntwork-io/terragrunt
https://golang.org/pkg/fmt/
https://www.terraform.io/docs/configuration/functions.html
http://www.ybrikman.com/writing/2016/02/14/agility-requires-safety/

Chapter	4.	How	to	Create
Reusable	Infrastructure	with
Terraform	Modules

At	the	end	of	Chapter	3,	you	had	deployed	the	architecture	shown	in
Figure	4-1.

Figure	4-1.	A	load	balancer,	web	server	cluster,	and	database

This	works	great	as	a	staging	environment,	but	what	about	the	production
environment?	You	don’t	want	your	users	accessing	the	same	environment
your	employees	use	for	testing,	and	it’s	too	risky	testing	in	production,	so
you	typically	need	two	environments,	staging	and	production,	as	shown	in

Figure	4-2.	Ideally,	the	two	environments	are	nearly	identical,	though	you
may	run	slightly	fewer/smaller	servers	in	staging	to	save	money.

Figure	4-2.	Two	environments,	each	with	its	own	load	balancer,	web	server	cluster,	and
database

With	just	a	staging	environment,	the	file	layout	for	your	Terraform	code
looked	something	like	Figure	4-3.

Figure	4-3.	File	layout	with	only	a	staging	environment

If	you	were	to	add	a	production	environment,	you’d	end	up	with	the	file
layout	in	Figure	4-4.

How	do	you	avoid	duplication	between	the	staging	and	production
environments?	How	do	you	avoid	having	to	copy	and	paste	all	the	code	in

stage/services/webserver-cluster	into	prod/services/webserver-cluster	and
all	the	code	in	stage/data-stores/mysql	into	prod/data-stores/mysql?

In	a	general-purpose	programming	language	(e.g.,	Ruby,	Python,	Java),	if
you	had	the	same	code	copied	and	pasted	in	several	places,	you	could	put
that	code	inside	of	a	function	and	reuse	that	function	in	multiple	places
throughout	your	code:

def	example_function()

		puts	"Hello,	World"

end

#	Other	places	in	your	code

example_function()

Figure	4-4.	File	layout	with	a	staging	and	production	environment

With	Terraform,	you	can	put	your	code	inside	of	a	Terraform	module	and
reuse	that	module	in	multiple	places	throughout	your	code.	The
stage/services/webserver-cluster	and	prod/services/webserver-cluster
configurations	can	both	reuse	code	from	the	same	module	without	the
need	to	copy	and	paste	(see	Figure	4-5).

Figure	4-5.	Putting	code	into	modules	allows	you	to	reuse	that	code	from	multiple
environments

In	this	chapter,	I’ll	show	you	how	to	create	and	use	Terraform	modules	by
covering	the	following	topics:

Module	basics

Module	inputs

Module	outputs

Module	gotchas

Module	versioning

EXAMPLE	CODE
As	a	reminder,	all	of	the	code	examples	in	the	book	can	be	found	at	the
following	URL:	https://github.com/brikis98/terraform-up-and-running-
code.

Module	Basics
A	Terraform	module	is	very	simple:	any	set	of	Terraform	configuration
files	in	a	folder	is	a	module.	All	the	configurations	you’ve	written	so	far
have	technically	been	modules,	although	not	particularly	interesting	ones,
since	you	deployed	them	directly	(the	module	in	the	current	working
directory	is	called	the	root	module).	To	see	what	modules	are	really
capable	of,	you	have	to	use	one	module	from	another	module.

As	an	example,	let’s	turn	the	code	in	stage/services/webserver-cluster,
which	includes	an	Auto	Scaling	Group	(ASG),	Application	Load	Balancer
(ALB),	security	groups,	and	many	other	resources,	into	a	reusable	module.

As	a	first	step,	run	terraform	destroy	in	the
stage/services/webserver-cluster	to	clean	up	any	resources	you	created
earlier.	Next,	create	a	new	top-level	folder	called	modules	and	move	all

https://github.com/brikis98/terraform-up-and-running-code

the	files	from	stage/services/webserver-cluster	to
modules/services/webserver-cluster.	You	should	end	up	with	a	folder
structure	that	looks	something	like	Figure	4-6.

Open	up	the	main.tf	file	in	modules/services/webserver-cluster	and
remove	the	provider	definition.	This	should	be	defined	by	the	user	of
the	module	and	not	in	the	module	itself.

Figure	4-6.	The	folder	structure	with	a	module	and	a	staging	environment

You	can	now	make	use	of	this	module	in	the	stage	environment.	The
syntax	for	using	a	module	is:

module	"<NAME>"	{

		source	=	"<SOURCE>"

		[CONFIG	...]

}

Within	the	module	definition,	the	source	parameter	specifies	the	folder
where	the	module’s	code	can	be	found.	For	example,	you	can	create	a	new
file	in	stage/services/webserver-cluster/main.tf	and	use	the	webserver-
cluster	module	in	it	as	follows:

provider	"aws"	{

		region	=	"us-east-2"

}

module	"webserver_cluster"	{

		source	=	"../../../modules/services/webserver-cluster"

}

You	can	then	reuse	the	exact	same	module	in	the	production	environment
by	creating	a	new	prod/services/webserver-cluster/main.tf	file	with	the
following	contents:

provider	"aws"	{

		region	=	"us-east-2"

}

module	"webserver_cluster"	{

		source	=	"../../../modules/services/webserver-cluster"

}

And	there	you	have	it:	code	reuse	in	multiple	environments	without	any
copy/paste!	Note	that	whenever	you	add	a	module	to	your	Terraform
configurations	or	modify	the	source	parameter	of	a	module,	you	need	to
run	the	init	command	before	you	run	plan	or	apply:

$	terraform	init

Initializing	modules...

-	webserver_cluster	in	

../../../modules/services/webserver-cluster

Initializing	the	backend...

Initializing	provider	plugins...

Terraform	has	been	successfully	initialized!

Now	you’ve	seen	all	the	tricks	the	init	command	has	up	its	slieve!	It
downloads	providers,	modules,	and	configures	your	backends,	all	in	one
handy	command.

Before	you	run	the	apply	command	on	this	code,	you	should	note	that
there	is	a	problem	with	the	webserver-cluster	module:	all	the
names	are	hard-coded.	That	is,	the	name	of	the	security	groups,	ALB,	and
other	resources	are	all	hard-coded,	so	if	you	use	this	module	more	than
once,	you’ll	get	name	conflict	errors.	Even	the	database	details	are	hard-
coded	because	the	main.tf	file	you	copied	into
modules/services/webserver-cluster	is	using	a+terraform_remote_state+
data	source	to	figure	out	the	database	address	and	port,	and	that
terraform_remote_state	is	hard-coded	to	look	at	the	staging
environment.

To	fix	these	issues,	you	need	to	add	configurable	inputs	to	the
webserver-cluster	module	so	it	can	behave	differently	in	different

environments.

Module	Inputs
To	make	a	function	configurable	in	a	general-purpose	programming
language,	you	can	add	input	parameters	to	that	function:

def	example_function(param1,	param2)

		puts	"Hello,	#{param1}	#{param2}"

end

#	Other	places	in	your	code

example_function("foo",	"bar")

In	Terraform,	modules	can	have	input	parameters,	too.	To	define	them,
you	use	a	mechanism	you’re	already	familiar	with:	input	variables.	Open
up	modules/services/webserver-cluster/variables.tf	and	add	three	new
input	variables:

variable	"cluster_name"	{

		description	=	"The	name	to	use	for	all	the	cluster	

resources"

		type								=	string

}

variable	"db_remote_state_bucket"	{

		description	=	"The	name	of	the	S3	bucket	for	the	

database's	remote	state"

		type								=	string

}

variable	"db_remote_state_key"	{

		description	=	"The	path	for	the	database's	remote	

state	in	S3"

		type								=	string

}

Next,	go	through	modules/services/webserver-cluster/main.tf	and	use
var.cluster_name	instead	of	the	hard-coded	names	(e.g.,	instead	of
"terraform-asg-example").	For	example,	here	is	how	you	do	it	for
the	ALB	security	group:

resource	"aws_security_group"	"alb"	{

		name	=	"${var.cluster_name}-alb"

		ingress	{

				from_port			=	80

				to_port					=	80

				protocol				=	"tcp"

				cidr_blocks	=	["0.0.0.0/0"]

		}

		egress	{

				from_port			=	0

				to_port					=	0

				protocol				=	"-1"

				cidr_blocks	=	["0.0.0.0/0"]

		}

}

Notice	how	the	name	parameter	is	set	to	"${var.cluster_name}-
alb".	You’ll	need	to	make	a	similar	change	to	the	other
aws_security_group	resource	(e.g.,	give	it	the	name
"${var.cluster_name}-instance"),	the	aws_alb	resource,
and	the	tag	section	of	the	aws_autoscaling_group	resource.

You	should	also	update	the	terraform_remote_state	data	source
to	use	the	db_remote_state_bucket	and
db_remote_state_key	as	its	bucket	and	key	parameter,
respectively,	to	ensure	you’re	reading	the	state	file	from	the	right
environment:

data	"terraform_remote_state"	"db"	{

		backend	=	"s3"

		config	=	{

				bucket	=	var.db_remote_state_bucket

				key				=	var.db_remote_state_key

				region	=	"us-east-2"

		}

}

Now,	in	the	staging	environment,	in	stage/services/webserver-
cluster/main.tf,	you	can	set	these	new	input	variables	accordingly:

module	"webserver_cluster"	{

		source	=	"../../../modules/services/webserver-cluster"

		cluster_name											=	"webservers-stage"

		db_remote_state_bucket	=	"(YOUR_BUCKET_NAME)"

		db_remote_state_key				=	"stage/data-

stores/mysql/terraform.tfstate"

}

You	should	do	the	same	in	the	production	environment	in
prod/services/webserver-cluster/main.tf:

module	"webserver_cluster"	{

		source	=	"../../../modules/services/webserver-cluster"

		cluster_name											=	"webservers-prod"

		db_remote_state_bucket	=	"(YOUR_BUCKET_NAME)"

		db_remote_state_key				=	"prod/data-

stores/mysql/terraform.tfstate"

}

Note:	the	production	database	doesn’t	actually	exist	yet.	As	an	exercise,	I
leave	it	up	to	you	to	figure	out	how	to	deploy	MySQL	in	both	staging	and
production.

As	you	can	see,	you	set	input	variables	for	a	module	using	the	same	syntax
as	setting	input	parameters	for	a	resource.	The	input	variables	are	the	API
of	the	module,	controlling	how	it	will	behave	in	different	environments.
This	example	uses	different	names	in	different	environments,	but	you	may
want	to	make	other	parameters	configurable,	too.	For	example,	in	staging,
you	might	want	to	run	a	small	web	server	cluster	to	save	money,	but	in
production,	you	might	want	to	run	a	larger	cluster	to	handle	lots	of	traffic.
To	do	that,	you	can	add	three	more	input	variables	to
modules/services/webserver-cluster/variables.tf:

variable	"instance_type"	{

		description	=	"The	type	of	EC2	Instances	to	run	(e.g.	

t2.micro)"

		type								=	string

}

variable	"min_size"	{

		description	=	"The	minimum	number	of	EC2	Instances	in	

the	ASG"

		type								=	number

}

variable	"max_size"	{

		description	=	"The	maximum	number	of	EC2	Instances	in	

the	ASG"

		type								=	number

}

Next,	update	the	launch	configuration	in	modules/services/webserver-
cluster/main.tf	to	set	its	instance_type	parameter	to	the	new
var.instance_type	input	variable:

resource	"aws_launch_configuration"	"example"	{

		image_id								=	"ami-0c55b159cbfafe1f0"

		instance_type			=	var.instance_type

		security_groups	=	[aws_security_group.instance.id]

		user_data							=	

data.template_file.user_data.rendered

}

Similarly,	you	should	update	the	ASG	definition	in	the	same	file	to	set	its
min_size	and	max_size	parameters	to	the	new	var.min_size	and
var.max_size	input	variables:

resource	"aws_autoscaling_group"	"example"	{

		launch_configuration	=	

aws_launch_configuration.example.name

		vpc_zone_identifier		=	data.aws_subnet_ids.default.ids

		target_group_arns				=	[aws_lb_target_group.asg.arn]

		health_check_type				=	"ELB"

		min_size	=	var.min_size

		max_size	=	var.max_size

		tag	{

				key																	=	"Name"

				value															=	var.cluster_name

				propagate_at_launch	=	true

		}

}

Now,	in	the	staging	environment	(stage/services/webserver-
cluster/main.tf),	you	can	keep	the	cluster	small	and	inexpensive	by	setting
instance_type	to	"t2.micro"	and	min_size	and	max_size	to
2:

module	"webserver_cluster"	{

		source	=	"../../../modules/services/webserver-cluster"

		cluster_name											=	"webservers-stage"

		db_remote_state_bucket	=	"(YOUR_BUCKET_NAME)"

		db_remote_state_key				=	"stage/data-

stores/mysql/terraform.tfstate"

		instance_type	=	"t2.micro"

		min_size						=	2

		max_size						=	2

}

On	the	other	hand,	in	the	production	environment,	you	can	use	a	larger
instance_type	with	more	CPU	and	memory,	such	as	m4.large	(note:
this	instance	type	is	not	part	of	the	AWS	free	tier,	so	if	you’re	just	using
this	for	learning	and	don’t	want	to	be	charged,	use	"t2.micro"	for	the
instance_type),	and	you	can	set	max_size	to	10	to	allow	the
cluster	to	shrink	or	grow	depending	on	the	load	(don’t	worry,	the	cluster
will	launch	with	two	Instances	initially):

module	"webserver_cluster"	{

		source	=	"../../../modules/services/webserver-cluster"

		cluster_name											=	"webservers-prod"

		db_remote_state_bucket	=	"(YOUR_BUCKET_NAME)"

		db_remote_state_key				=	"prod/data-

stores/mysql/terraform.tfstate"

		instance_type	=	"m4.large"

		min_size						=	2

		max_size						=	10

}

Module	Locals
Using	input	variables	to	define	your	module’s	inputs	is	great,	but	what	if
you	need	a	way	to	define	a	variable	in	your	module	to	do	some
intermediary	calculation,	or	just	to	keep	your	code	DRY,	but	you	don’t
want	to	expose	that	variable	as	a	configurable	input?	For	example,	the
load	balancer	in	the	webservers	module	in	modules/services/webserver-

cluster/main.tf	listens	on	port	80,	the	default	port	for	HTTP.	This	port
number	is	currently	copy/pasted	in	multiple	places,	including	the	load
balancer	listener:

resource	"aws_lb_listener"	"http"	{

		load_balancer_arn	=	aws_lb.example.arn

		port														=	80

		protocol										=	"HTTP"

		#	By	default,	return	a	simple	404	page

		default_action	{

				type	=	"fixed-response"

				fixed_response	{

						content_type	=	"text/plain"

						message_body	=	"404:	page	not	found"

						status_code		=	404

				}

		}

}

And	the	load	balancer	security	group:

resource	"aws_security_group"	"alb"	{

		name	=	"${var.cluster_name}-alb"

		ingress	{

				from_port			=	80

				to_port					=	80

				protocol				=	"tcp"

				cidr_blocks	=	["0.0.0.0/0"]

		}

		egress	{

				from_port			=	0

				to_port					=	0

				protocol				=	"-1"

				cidr_blocks	=	["0.0.0.0/0"]

		}

}

The	values	in	the	security	group,	including	the	“all	IPs”	CIDR	block
0.0.0.0/0,	the	“any	port”	value	of	0,	and	the	“any	protocol”	value	of
“-1”	are	also	copy/pasted	in	several	places	throughout	the	module.	Having
these	magical	values	hard-coded	in	multiple	places	makes	the	code	harder
to	read	and	maintain.	You	could	extract	values	into	input	variables,	but
then	users	of	your	module	will	be	able	to	(accidentally)	override	these
values,	which	you	may	not	want.	Instead	of	using	input	variables,	you	can
define	these	as	local	values:

locals	{

		http_port				=	80

		any_port					=	0

		any_protocol	=	"-1"

		tcp_protocol	=	"tcp"

		all_ips						=	["0.0.0.0/0"]

}

Local	values	allow	you	to	assign	a	name	to	any	Terraform	expression,	and
to	use	that	name	throughout	the	module.	These	names	are	only	visible
within	the	module,	so	they	will	have	no	impact	on	other	modules,	and	you
can’t	override	these	values	from	outside	of	the	module.	To	read	the	value
of	a	local,	you	need	to	use	a	local	reference,	which	uses	the	following
syntax:

local.<NAME>

Use	this	syntax	to	update	your	load	balancer	listener:

resource	"aws_lb_listener"	"http"	{

		load_balancer_arn	=	aws_lb.example.arn

		port														=	local.http_port

		protocol										=	"HTTP"

		#	By	default,	return	a	simple	404	page

		default_action	{

				type	=	"fixed-response"

				fixed_response	{

						content_type	=	"text/plain"

						message_body	=	"404:	page	not	found"

						status_code		=	404

				}

		}

}

And	all	the	security	groups	in	the	module,	including	the	load	balancer
security	group:

resource	"aws_security_group"	"alb"	{

		name	=	"${var.cluster_name}-alb"

		ingress	{

				from_port			=	local.http_port

				to_port					=	local.http_port

				protocol				=	local.tcp_protocol

				cidr_blocks	=	local.all_ips

		}

		egress	{

				from_port			=	local.any_port

				to_port					=	local.any_port

				protocol				=	local.any_protocol

				cidr_blocks	=	local.all_ips

		}

}

Locals	make	your	code	easier	to	read	and	maintain,	so	use	them	often!

Module	Outputs

A	powerful	feature	of	Auto	Scaling	Groups	is	that	you	can	configure	them
to	increase	or	decrease	the	number	of	servers	you	have	running	in
response	to	load.	One	way	to	do	this	is	to	use	an	auto	scaling	schedule,
which	can	change	the	size	of	the	cluster	at	a	scheduled	time	during	the
day.	For	example,	if	traffic	to	your	cluster	is	much	higher	during	normal
business	hours,	you	can	use	an	auto	scaling	schedule	to	increase	the
number	of	servers	at	9	a.m.	and	decrease	it	at	5	p.m.

If	you	define	the	auto	scaling	schedule	in	the	webserver-cluster
module,	it	would	apply	to	both	staging	and	production.	Since	you	don’t
need	to	do	this	sort	of	scaling	in	your	staging	environment,	for	the	time
being,	you	can	define	the	auto	scaling	schedule	directly	in	the	production
configurations	(in	Chapter	5,	you’ll	see	how	to	conditionally	define
resources,	which	will	allow	you	to	move	the	auto	scaling	policy	into	the
webserver-cluster	module).

To	define	an	auto	scaling	schedule,	add	the	following	two
aws_autoscaling_schedule	resources	to	prod/services/webserver-
cluster/main.tf:

resource	"aws_autoscaling_schedule"	

"scale_out_during_business_hours"	{

		scheduled_action_name	=	"scale-out-during-business-

hours"

		min_size														=	2

		max_size														=	10

		desired_capacity						=	10

		recurrence												=	"0	9	*	*	*"

}

resource	"aws_autoscaling_schedule"	"scale_in_at_night"	

{

		scheduled_action_name	=	"scale-in-at-night"

		min_size														=	2

		max_size														=	10

		desired_capacity						=	2

		recurrence												=	"0	17	*	*	*"

}

This	code	uses	one	aws_autoscaling_schedule	resource	to
increase	the	number	of	servers	to	10	during	the	morning	hours	(the
recurrence	parameter	uses	cron	syntax,	so	"0	9	*	*	*"	means	“9
a.m.	every	day”)	and	a	second	aws_autoscaling_schedule
resource	to	decrease	the	number	of	servers	at	night	("0	17	*	*	*"
means	“5	p.m.	every	day”).	However,	both	usages	of
aws_autoscaling_schedule	are	missing	a	required	parameter,
autoscaling_group_name,	which	specifies	the	name	of	the	ASG.
The	ASG	itself	is	defined	within	the	webserver-cluster	module,	so
how	do	you	access	its	name?	In	a	general-purpose	programming	language,
functions	can	return	values:

def	example_function(param1,	param2)

		return	"Hello,	#{param1}	#{param2}"

end

#	Other	places	in	your	code

return_value	=	example_function("foo",	"bar")

In	Terraform,	a	module	can	also	return	values.	Again,	this	is	done	using	a
mechanism	you	already	know:	output	variables.	You	can	add	the	ASG
name	as	an	output	variable	in	/modules/services/webserver-
cluster/outputs.tf	as	follows:

output	"asg_name"	{

		value							=	aws_autoscaling_group.example.name

		description	=	"The	name	of	the	Auto	Scaling	Group"

}

You	can	access	module	output	variables	the	same	way	as	resource	output
attributes.	The	syntax	is:

module.<MODULE_NAME>.<OUTPUT_NAME>

For	example:

module.frontend.asg_name

In	prod/services/webserver-cluster/main.tf,	you	can	use	this	syntax	to	set
the	autoscaling_group_name	parameter	in	each	of	the
aws_autoscaling_schedule	resources:

resource	"aws_autoscaling_schedule"	

"scale_out_during_business_hours"	{

		scheduled_action_name	=	"scale-out-during-business-

hours"

		min_size														=	2

		max_size														=	10

		desired_capacity						=	10

		recurrence												=	"0	9	*	*	*"

		autoscaling_group_name	=	

module.webserver_cluster.asg_name

}

resource	"aws_autoscaling_schedule"	"scale_in_at_night"	

{

		scheduled_action_name	=	"scale-in-at-night"

		min_size														=	2

		max_size														=	10

		desired_capacity						=	2

		recurrence												=	"0	17	*	*	*"

		autoscaling_group_name	=	

module.webserver_cluster.asg_name

}

You	may	want	to	expose	one	other	output	in	the	webserver-cluster
module:	the	DNS	name	of	the	ALB,	so	you	know	what	URL	to	test	when
the	cluster	is	deployed.	To	do	that,	you	again	add	an	output	variable	in
/modules/services/webserver-cluster/outputs.tf:

output	"alb_dns_name"	{

		value							=	aws_lb.example.dns_name

		description	=	"The	domain	name	of	the	load	balancer"

}

You	can	then	“pass	through”	this	output	in	stage/services/webserver-
cluster/outputs.tf	and	prod/services/webserver-cluster/outputs.tf	as
follows:

output	"alb_dns_name"	{

		value							=	module.webserver_cluster.alb_dns_name

		description	=	"The	domain	name	of	the	load	balancer"

}

Your	web	server	cluster	is	almost	ready	to	deploy.	The	only	thing	left	is	to
take	a	few	gotchas	into	account.

Module	Gotchas
When	creating	modules,	watch	out	for	these	gotchas:

File	paths

Inline	blocks

File	Paths
In	Chapter	3,	you	moved	the	User	Data	script	for	the	web	server	cluster

into	an	external	file,	user-data.sh,	and	used	the	file	built-in	function	to
read	this	file	from	disk.	The	catch	with	the	file	function	is	that	the	file
path	you	use	has	to	be	relative	(since	you	could	run	Terraform	on	many
different	computers)—but	what	is	it	relative	to?

By	default,	Terraform	interprets	the	path	relative	to	the	current	working
directory.	That	works	if	you’re	using	the	file	function	in	a	Terraform
configuration	file	that’s	in	the	same	directory	as	where	you’re	running
terraform	apply	(that	is,	if	you’re	using	the	file	function	in	the
root	module),	but	that	won’t	work	when	you’re	using	file	in	a	module
that’s	defined	in	a	separate	folder.

To	solve	this	issue,	you	can	use	an	expression	known	as	a	path	reference,
which	is	of	the	form	path.<TYPE>.	Terraform	supports	the	following
types	of	path	references:

path.module

Returns	the	filesystem	path	of	the	module	where	the	expression	is
placed.

path.root

Returns	the	filesystem	path	of	the	root	module	of	the	configuration.

path.cwd

Returns	the	filesystem	path	of	the	current	working	directory.	In	normal
use	of	Terraform	this	is	the	same	as	path.root,	but	some	advanced
uses	of	Terraform	run	it	from	a	directory	other	than	the	root	module
directory,	causing	these	paths	to	be	different.

For	the	User	Data	script,	you	need	a	path	relative	to	the	module	itself,	so
you	should	use	path.module	in	the	template_file	data	source	in

modules/services/webserver-cluster/main.tf:

data	"template_file"	"user_data"	{

		template	=	file("${path.module}/user-data.sh")

		vars	=	{

				server_port	=	var.server_port

				db_address		=	

data.terraform_remote_state.db.outputs.address

				db_port					=	

data.terraform_remote_state.db.outputs.port

		}

}

Inline	Blocks
The	configuration	for	some	Terraform	resources	can	be	defined	either	as
inline	blocks	or	as	separate	resources.	When	creating	a	module,	you
should	always	prefer	using	a	separate	resource.

For	example,	the	aws_security_group	resource	allows	you	to	define
ingress	and	egress	rules	via	inline	blocks,	as	you	saw	in	the	webserver-
cluster	module	(modules/services/webserver-cluster/main.tf):

resource	"aws_security_group"	"alb"	{

		name	=	"${var.cluster_name}-alb"

		ingress	{

				from_port			=	local.http_port

				to_port					=	local.http_port

				protocol				=	local.tcp_protocol

				cidr_blocks	=	local.all_ips

		}

		egress	{

				from_port			=	local.any_port

				to_port					=	local.any_port

				protocol				=	local.any_protocol

				cidr_blocks	=	local.all_ips

		}

}

You	should	change	this	module	to	define	the	exact	same	ingress	and
egress	rules	by	using	separate	aws_security_group_rule	resources
(make	sure	to	do	this	for	both	security	groups	in	the	module):

resource	"aws_security_group"	"alb"	{

		name	=	"${var.cluster_name}-alb"

}

resource	"aws_security_group_rule"	"allow_http_inbound"	

{

		type														=	"ingress"

		security_group_id	=	aws_security_group.alb.id

		from_port			=	local.http_port

		to_port					=	local.http_port

		protocol				=	local.tcp_protocol

		cidr_blocks	=	local.all_ips

}

resource	"aws_security_group_rule"	"allow_all_outbound"	

{

		type														=	"egress"

		security_group_id	=	aws_security_group.alb.id

		from_port			=	local.any_port

		to_port					=	local.any_port

		protocol				=	local.any_protocol

		cidr_blocks	=	local.all_ips

}

If	you	try	to	use	a	mix	of	both	inline	blocks	and	separate	resources,	you

will	get	errors	where	routing	rules	conflict	and	overwrite	each	other.
Therefore,	you	must	use	one	or	the	other.	Because	of	this	limitation,	when
creating	a	module,	you	should	always	try	to	use	a	separate	resource
instead	of	the	inline	block.	Otherwise,	your	module	will	be	less	flexible
and	configurable.

For	example,	if	all	the	ingress	and	egress	rules	within	the	webserver-
cluster	module	are	defined	as	separate
aws_security_group_rule	resources,	you	can	make	the	module
flexible	enough	to	allow	users	to	add	custom	rules	from	outside	of	the
module.	To	do	that,	you	export	the	ID	of	the	aws_security_group	as
an	output	variable	in	modules/services/webserver-cluster/outputs.tf:

output	"alb_security_group_id"	{

		value							=	aws_security_group.alb.id

		description	=	"The	ID	of	the	Security	Group	attached	

to	the	load	balancer"

}

Now,	imagine	that	in	the	staging	environment,	you	needed	to	expose	an
extra	port	just	for	testing.	This	is	now	easy	to	do	by	adding	an
aws_security_group_rule	resource	to	stage/services/webserver-
cluster/main.tf:

resource	"aws_security_group_rule"	

"allow_testing_inbound"	{

		type														=	"ingress"

		security_group_id	=	

module.webserver_cluster.alb_security_group_id

		from_port			=	12345

		to_port					=	12345

		protocol				=	"tcp"

		cidr_blocks	=	["0.0.0.0/0"]

}

Had	you	defined	even	a	single	ingress	or	egress	rule	as	an	inline	block,
this	code	would	not	work.	Note	that	this	same	type	of	problem	affects	a
number	of	Terraform	resources,	such	as:

aws_security_group	and
aws_security_group_rule

aws_route_table	and	aws_route

aws_network_acl	and	aws_network_acl_rule

At	this	point,	you	are	finally	ready	to	deploy	your	web	server	cluster	in
both	staging	and	production.	Run	terraform	apply	as	usual	and
enjoy	using	two	separate	copies	of	your	infrastructure.

NETWORK	ISOLATION
The	examples	in	this	chapter	create	two	environments	that	are	isolated	in
your	Terraform	code,	and	isolated	in	terms	of	having	separate	load
balancers,	servers,	and	databases,	but	they	are	not	isolated	at	the	network
level.	To	keep	all	the	examples	in	this	book	simple,	all	the	resources	deploy
into	the	same	Virtual	Private	Cloud	(VPC).	That	means	a	server	in	the
staging	environment	can	talk	to	a	server	in	the	production	environment	and
vice	versa.

In	real-world	usage,	running	both	environments	in	one	VPC	opens	you	up	to
two	risks.	First,	a	mistake	in	one	environment	could	affect	the	other.	For
example,	if	you’re	making	changes	in	staging	and	accidentally	mess	up	the
configuration	of	the	route	tables,	all	the	routing	in	production	may	be
affected	too.	Second,	if	an	attacker	gets	access	to	one	environment,	they	also
have	access	to	the	other.	If	you’re	making	rapid	changes	in	staging	and
accidentally	leave	a	port	exposed,	any	hacker	that	broke	in	would	not	only
have	access	to	your	staging	data,	but	also	your	production	data.

Therefore,	outside	of	simple	examples	and	experiments,	you	should	run
each	environment	in	a	separate	VPC.	In	fact,	to	be	extra	sure,	you	may	even
run	each	environment	in	totally	separate	AWS	accounts!

Module	Versioning
If	both	your	staging	and	production	environment	are	pointing	to	the	same
module	folder,	then	as	soon	as	you	make	a	change	in	that	folder,	it	will
affect	both	environments	on	the	very	next	deployment.	This	sort	of
coupling	makes	it	harder	to	test	a	change	in	staging	without	any	chance	of
affecting	production.	A	better	approach	is	to	create	versioned	modules	so
that	you	can	use	one	version	in	staging	(e.g.,	v0.0.2)	and	a	different
version	in	production	(e.g.,	v0.0.1),	as	shown	in	Figure	4-7.

Figure	4-7.	Using	different	versions	of	a	module	in	different	environments

In	all	the	module	examples	you’ve	seen	so	far,	whenever	you	used	a
module,	you	set	the	source	parameter	of	the	module	to	a	local	file	path.
In	addition	to	file	paths,	Terraform	supports	other	types	of	module
sources,	such	as	Git	URLs,	Mercurial	URLs,	and	arbitrary	HTTP	URLs.
The	easiest	way	to	create	a	versioned	module	is	to	put	the	code	for	the
module	in	a	separate	Git	repository	and	to	set	the	source	parameter	to
that	repository’s	URL.	That	means	your	Terraform	code	will	be	spread	out
across	(at	least)	two	repositories:

1

modules

This	repo	defines	reusable	modules.	Think	of	each	module	as	a
“blueprint”	that	defines	a	specific	part	of	your	infrastructure.

live

This	repo	defines	the	live	infrastructure	you’re	running	in	each
environment	(stage,	prod,	mgmt,	etc).	Think	of	this	as	the	“houses”
you	built	from	the	“blueprints”	in	the	modules	repo.

The	updated	folder	structure	for	your	Terraform	code	will	now	look
something	like	Figure	4-8.

Figure	4-8.	File	layout	with	multiple	repositories

To	set	up	this	folder	structure,	you’ll	first	need	to	move	the	stage,	prod,
and	global	folders	into	a	folder	called	live.	Next,	configure	the	live	and
modules	folders	as	separate	git	repositories.	Here	is	an	example	of	how	to
do	that	for	the	modules	folder:

$	cd	modules

$	git	init

$	git	add	.

$	git	commit	-m	"Initial	commit	of	modules	repo"

$	git	remote	add	origin	"(URL	OF	REMOTE	GIT	REPOSITORY)"

$	git	push	origin	master

You	can	also	add	a	tag	to	the	modules	repo	to	use	as	a	version	number.	If
you’re	using	GitHub,	you	can	use	the	GitHub	UI	to	create	a	release,	which
will	create	a	tag	under	the	hood.	If	you’re	not	using	GitHub,	you	can	use
the	Git	CLI:

$	git	tag	-a	"v0.0.1"	-m	"First	release	of	webserver-

cluster	module"

$	git	push	--follow-tags

Now	you	can	use	this	versioned	module	in	both	staging	and	production	by
specifying	a	Git	URL	in	the	source	parameter.	Here	is	what	that	would
look	like	in	live/stage/services/webserver-cluster/main.tf	if	your
modules	repo	was	in	the	GitHub	repo	github.com/foo/modules	(note	that
the	double-slash	in	the	Git	URL	is	required):

module	"webserver_cluster"	{

		source	=	

"git::git@github.com:foo/modules.git//webserver-cluster?

ref=v0.0.1"

		cluster_name											=	"webservers-stage"

		db_remote_state_bucket	=	"(YOUR_BUCKET_NAME)"

		db_remote_state_key				=	"stage/data-

stores/mysql/terraform.tfstate"

		instance_type	=	"t2.micro"

		min_size						=	2

		max_size						=	2

}

If	you	want	to	try	out	versioned	modules	without	messing	with	Git	repos,
you	can	use	a	module	from	the	code	examples	GitHub	repo	for	this	book
(I	had	to	break	up	the	URL	to	make	it	fit	in	the	book,	but	it	should	all	be
on	one	line):

source	=	"git@github.com:brikis98/terraform-up-and-

running-code.git//

		code/terraform/04-terraform-module/module-

example/modules/

		services/webserver-cluster?ref=v0.0.2"

The	ref	parameter	allows	you	to	specify	a	specific	Git	commit	via	its
sha1	hash,	a	branch	name,	or,	as	in	this	example,	a	specific	Git	tag.	I
generally	recommend	using	Git	tags	as	version	numbers	for	modules.
Branch	names	are	not	stable,	as	you	always	get	the	latest	commit	on	a
branch,	which	may	change	every	time	you	run	the	get	command,	and	the
sha1	hashes	are	not	very	human	friendly.	Git	tags	are	as	stable	as	a
commit	(in	fact,	a	tag	is	just	a	pointer	to	a	commit)	but	they	allow	you	to
use	a	friendly,	readable	name.

A	particularly	useful	naming	scheme	for	tags	is	semantic	versioning.	This
is	a	versioning	scheme	of	the	format	MAJOR.MINOR.PATCH	(e.g.,
1.0.4)	with	specific	rules	on	when	you	should	increment	each	part	of	the
version	number.	In	particular,	you	should	increment	the…

MAJOR	version	when	you	make	incompatible	API	changes,

MINOR	version	when	you	add	functionality	in	a	backward-
compatible	manner,	and

PATCH	version	when	you	make	backward-compatible	bug	fixes.

Semantic	versioning	gives	you	a	way	to	communicate	to	users	of	your

https://github.com/brikis98/terraform-up-and-running-code
http://semver.org

module	what	kind	of	changes	you’ve	made	and	the	implications	of
upgrading.

Since	you’ve	updated	your	Terraform	code	to	use	a	versioned	module
URL,	you	need	to	tell	Terraform	to	download	the	module	code	by	re-
running	terraform	init:

$	terraform	init

Initializing	modules...

Downloading	git@github.com:brikis98/terraform-up-and-

running-code.git?ref=v0.0.2	for	webserver_cluster...

-	webserver_cluster	in	

.terraform/modules/webserver_cluster/code/terraform/04-

terraform-module/module-

example/modules/services/webserver-cluster

(...)

This	time,	you	can	see	that	Terraform	downloads	the	module	code	from
Git	rather	than	your	local	filesystem.	Once	the	module	code	has	been
downloaded,	you	can	run	the	apply	command	as	usual.

PRIVATE	GIT	REPOS
If	your	Terraform	module	is	in	a	private	Git	repository,	to	use	that	repo	as	a
module	source,	you	will	need	to	give	Terraform	a	way	to	authenticate	to
that	Git	repository.	I	recommend	using	SSH	auth	so	that	you	don’t	have	to
hard-code	the	credentials	for	your	repo	in	the	code	itself.	With	SSH	auth,
each	developer	can	create	an	SSH	key,	associate	it	with	their	Git	user,	and
add	it	to	ssh-agent,	and	Terraform	will	automatically	use	that	key	for
authentication	if	you	use	an	SSH	source	URL.

The	source	URL	should	be	of	the	form:

source	=	"git::git@github.com:

<OWNER>/<REPO>.git//<PATH>?ref=<VERSION>"

2

For	example:

source	=	"git::git@github.com:gruntwork-io/terraform-

google-gke.git//modules/gke-cluster?ref=v0.1.2"

To	check	that	you’ve	formatted	the	URL	correctly,	try	to	git	clone	the
base	URL	from	your	terminal:

$	git	clone	git@github.com:<OWNER>/<REPO>.git

If	that	command	succeeds,	Terraform	should	be	able	to	use	the	private	repo
too.

Now,	imagine	you	made	some	changes	to	the	webserver-cluster
module	and	you	wanted	to	test	them	out	in	staging.	First,	you’d	commit
those	changes	to	the	modules	repo:

$	cd	modules

$	git	add	.

$	git	commit	-m	"Made	some	changes	to	webserver-cluster"

$	git	push	origin	master

Next,	you	would	create	a	new	tag	in	the	modules	repo:

$	git	tag	-a	"v0.0.2"	-m	"Second	release	of	webserver-

cluster"

$	git	push	--follow-tags

And	now	you	can	update	just	the	source	URL	used	in	the	staging
environment	(live/stage/services/webserver-cluster/main.tf)	to	use	this
new	version:

module	"webserver_cluster"	{

		source	=	

"git::git@github.com:foo/modules.git//webserver-cluster?

ref=v0.0.2"

		cluster_name											=	"webservers-stage"

		db_remote_state_bucket	=	"(YOUR_BUCKET_NAME)"

		db_remote_state_key				=	"stage/data-

stores/mysql/terraform.tfstate"

		instance_type	=	"t2.micro"

		min_size						=	2

		max_size						=	2

}

In	production	(live/prod/services/webserver-cluster/main.tf),	you	can
happily	continue	to	run	v0.0.1	unchanged:

module	"webserver_cluster"	{

		source	=	

"git::git@github.com:foo/modules.git//webserver-cluster?

ref=v0.0.1"

		cluster_name											=	"webservers-prod"

		db_remote_state_bucket	=	"(YOUR_BUCKET_NAME)"

		db_remote_state_key				=	"prod/data-

stores/mysql/terraform.tfstate"

		instance_type	=	"m4.large"

		min_size						=	2

		max_size						=	10

}

Once	v0.0.2	has	been	thoroughly	tested	and	proven	in	staging,	you	can
then	update	production,	too.	But	if	there	turns	out	to	be	a	bug	in	v0.0.2,	no
big	deal,	as	it	has	no	effect	on	the	real	users	of	your	production
environment.	Fix	the	bug,	release	a	new	version,	and	repeat	the	whole
process	again	until	you	have	something	stable	enough	for	production.

DEVELOPING	MODULES
Versioned	modules	are	great	when	you’re	deploying	to	a	shared
environment	(e.g.,	staging	or	production),	but	when	you’re	just	testing	on
your	own	computer,	you’ll	want	to	use	local	file	paths.	This	allows	you	to
iterate	faster,	as	you’ll	be	able	to	make	a	change	in	the	module	folders	and
rerun	the	plan	or	apply	command	in	the	live	folders	immediately,	rather
than	having	to	commit	your	code	and	publish	a	new	version	each	time.

Since	the	goal	of	this	book	is	to	help	you	learn	and	experiment	with
Terraform	as	quickly	as	possible,	the	rest	of	the	code	examples	will	use
local	file	paths	for	modules.

Conclusion
By	defining	infrastructure	as	code	in	modules,	you	can	apply	a	variety	of
software	engineering	best	practices	to	your	infrastructure.	You	can
validate	each	change	to	a	module	through	code	reviews	and	automated
tests;	you	can	create	semantically	versioned	releases	of	each	module;	and
you	can	safely	try	out	different	versions	of	a	module	in	different
environments	and	roll	back	to	previous	versions	if	you	hit	a	problem.

All	of	this	can	dramatically	increase	your	ability	to	build	infrastructure
quickly	and	reliably,	as	developers	will	be	able	to	reuse	entire	pieces	of
proven,	tested,	documented	infrastructure.	For	example,	you	could	create	a
canonical	module	that	defines	how	to	deploy	a	single	microservice—
including	how	to	run	a	cluster,	how	to	scale	the	cluster	in	response	to	load,
and	how	to	distribute	traffic	requests	across	the	cluster—and	each	team
could	use	this	module	to	manage	their	own	microservices	with	just	a	few
lines	of	code.

To	make	such	a	module	work	for	multiple	teams,	the	Terraform	code	in
that	module	must	be	flexible	and	configurable.	For	example,	one	team
may	want	to	use	your	module	to	deploy	a	single	instance	of	their
microservice	with	no	load	balancer	while	another	may	want	a	dozen
instances	of	their	microservice	with	a	load	balancer	to	distribute	traffic
between	those	instances.	How	do	you	do	conditional	statements	in
Terraform?	Is	there	a	way	to	do	a	for-loop?	Is	there	a	way	to	use
Terraform	to	roll	out	changes	to	this	microservice	without	downtime?
These	advanced	aspects	of	Terraform	syntax	are	the	topic	of	Chapter	5.

1
	For	the	full	details	on	source	URLs,	see
https://www.terraform.io/docs/modules/sources.html.

2
	See	https://help.github.com/en/articles/connecting-to-github-with-ssh	for	a	nice
guide	on	working	with	SSH	keys.

https://www.terraform.io/docs/modules/sources.html
https://help.github.com/en/articles/connecting-to-github-with-ssh

Chapter	5.	Terraform	Tips	and
Tricks:	Loops,	If-Statements,
Deployment,	and	Gotchas

Terraform	is	a	declarative	language.	As	discussed	in	Chapter	1,
infrastructure	as	code	in	a	declarative	language	tends	to	provide	a	more
accurate	view	of	what’s	actually	deployed	than	a	procedural	language,	so
it’s	easier	to	reason	about	and	makes	it	easier	to	keep	the	codebase	small.
However,	certain	types	of	tasks	are	more	difficult	in	a	declarative
language.

For	example,	since	declarative	languages	typically	don’t	have	for-loops,
how	do	you	repeat	a	piece	of	logic—such	as	creating	multiple	similar
resources—without	copy	and	paste?	And	if	the	declarative	language
doesn’t	support	if-statements,	how	can	you	conditionally	configure
resources,	such	as	creating	a	Terraform	module	that	can	create	certain
resources	for	some	users	of	that	module	but	not	for	others?	Finally,	how
do	you	express	an	inherently	procedural	idea,	such	as	a	zero-downtime
deployment,	in	a	declarative	language?

Fortunately,	Terraform	provides	a	few	primitives—namely,	a	meta-
parameter	called	count,	for_each	and	for	expressions,	a	lifecycle
block	called	create_before_destroy,	a	ternary	operator,	plus	a
large	number	of	functions—that	allow	you	to	do	certain	types	of	loops,	if-
statements,	and	zero-downtime	deployments.	Here	are	the	topics	I’ll	cover
in	this	chapter:

Loops

Conditionals

Zero-downtime	deployment

Terraform	gotchas

EXAMPLE	CODE
As	a	reminder,	all	of	the	code	examples	in	the	book	can	be	found	at	the
following	URL:	https://github.com/brikis98/terraform-up-and-running-
code.

Loops
Terraform	offers	several	different	looping	constructs,	each	intended	to	be
used	in	a	slightly	different	condition:

1.	 count	parameter:	loop	over	resources.

2.	 for_each	expressions:	loop	over	inline	blocks	within	a
resource.

3.	 for	expressions:	loop	over	lists	and	maps.

4.	 for	string	directive:	loop	over	lists	and	maps	within	a	string.

Let’s	go	through	these	one	at	a	time.

Loops	with	the	count	parameter
In	Chapter	2,	you	created	an	IAM	user	by	clicking	around	the	AWS
console.	Now	that	you	have	this	user,	you	can	create	and	manage	all	future
IAM	users	with	Terraform.	Consider	the	following	Terraform	code,	which

https://github.com/brikis98/terraform-up-and-running-code

should	live	in	live/global/iam/main.tf:

provider	"aws"	{

		region	=	"us-east-2"

}

resource	"aws_iam_user"	"example"	{

		name	=	"neo"

}

This	code	uses	the	aws_iam_user	resource	to	create	a	single	new	IAM
user.	What	if	you	wanted	to	create	three	IAM	users?	In	a	general-purpose
programming	language,	you’d	probably	use	a	for-loop:

#	This	is	just	pseudo	code.	It	won't	actually	work	in	

Terraform.

for	(i	=	0;	i	<	3;	i++)	{

		resource	"aws_iam_user"	"example"	{

				name	=	"neo"

		}

}

Terraform	does	not	have	for-loops	or	other	traditional	procedural	logic
built	into	the	language,	so	this	syntax	will	not	work.	However,	every
Terraform	resource	has	a	meta-parameter	you	can	use	called	count.	This
parameter	defines	how	many	copies	of	the	resource	to	create.	Therefore,
you	can	create	three	IAM	users	as	follows:

resource	"aws_iam_user"	"example"	{

		count	=	3

		name		=	"neo"

}

One	problem	with	this	code	is	that	all	three	IAM	users	would	have	the
same	name,	which	would	cause	an	error,	since	usernames	must	be	unique.

If	you	had	access	to	a	standard	for-loop,	you	might	use	the	index	in	the	for
loop,	i,	to	give	each	user	a	unique	name:

#	This	is	just	pseudo	code.	It	won't	actually	work	in	

Terraform.

for	(i	=	0;	i	<	3;	i++)	{

		resource	"aws_iam_user"	"example"	{

				name	=	"neo.${i}"

		}

}

To	accomplish	the	same	thing	in	Terraform,	you	can	use	count.index
to	get	the	index	of	each	“iteration”	in	the	“loop”:

resource	"aws_iam_user"	"example"	{

		count	=	3

		name		=	"neo.${count.index}"

}

If	you	run	the	plan	command	on	the	preceding	code,	you	will	see	that
Terraform	wants	to	create	three	IAM	users,	each	with	a	different	name
(“neo.0”,	“neo.1”,	“neo.2”):

Terraform	will	perform	the	following	actions:

		#	aws_iam_user.example[0]	will	be	created

		+	resource	"aws_iam_user"	"example"	{

						+	arn											=	(known	after	apply)

						+	force_destroy	=	false

						+	id												=	(known	after	apply)

						+	name										=	"neo.0"

						+	path										=	"/"

						+	unique_id					=	(known	after	apply)

				}

		#	aws_iam_user.example[1]	will	be	created

		+	resource	"aws_iam_user"	"example"	{

						+	arn											=	(known	after	apply)

						+	force_destroy	=	false

						+	id												=	(known	after	apply)

						+	name										=	"neo.1"

						+	path										=	"/"

						+	unique_id					=	(known	after	apply)

				}

		#	aws_iam_user.example[2]	will	be	created

		+	resource	"aws_iam_user"	"example"	{

						+	arn											=	(known	after	apply)

						+	force_destroy	=	false

						+	id												=	(known	after	apply)

						+	name										=	"neo.2"

						+	path										=	"/"

						+	unique_id					=	(known	after	apply)

				}

Plan:	3	to	add,	0	to	change,	0	to	destroy.

Of	course,	a	username	like	“neo.0”	isn’t	particularly	usable.	If	you
combine	count.index	with	some	built-in	functions	from	Terraform,
you	can	customize	each	“iteration”	of	the	“loop”	even	more.

For	example,	you	could	define	all	of	the	IAM	usernames	you	want	in	an
input	variable	in	live/global/iam/variables.tf:

variable	"user_names"	{

		description	=	"Create	IAM	users	with	these	names"

		type								=	list(string)

		default					=	["neo",	"trinity",	"morpheus"]

}

If	you	were	using	a	general-purpose	programming	language	with	loops
and	arrays,	you	would	configure	each	IAM	user	to	use	a	different	name	by
looking	up	index	i	in	the	array	var.user_names:

#	This	is	just	pseudo	code.	It	won't	actually	work	in	

Terraform.

for	(i	=	0;	i	<	3;	i++)	{

		resource	"aws_iam_user"	"example"	{

				name	=	vars.user_names[i]

		}

}

In	Terraform,	you	can	accomplish	the	same	thing	by	using	count,	a	new
expression	for	working	with	lists,	and	the	built-in	function	length:

list[<INDEX>]

length(list)

The	array	look	up	syntax	is	similar	to	most	programming	languages:	it
looks	up	INDEX	in	the	given	list.	The	length	function	returns	the
number	of	items	in	the	list	(it	also	works	with	strings	and	maps).
Putting	these	together,	you	get:

resource	"aws_iam_user"	"example"	{

		count	=	length(var.user_names)

		name		=	var.user_names[count.index]

}

Now	when	you	run	the	plan	command,	you’ll	see	that	Terraform	wants
to	create	three	IAM	users,	each	with	a	unique	name:

Terraform	will	perform	the	following	actions:

		#	aws_iam_user.example[0]	will	be	created

		+	resource	"aws_iam_user"	"example"	{

						+	arn											=	(known	after	apply)

						+	force_destroy	=	false

						+	id												=	(known	after	apply)

						+	name										=	"neo"

						+	path										=	"/"

						+	unique_id					=	(known	after	apply)

				}

		#	aws_iam_user.example[1]	will	be	created

		+	resource	"aws_iam_user"	"example"	{

						+	arn											=	(known	after	apply)

						+	force_destroy	=	false

						+	id												=	(known	after	apply)

						+	name										=	"trinity"

						+	path										=	"/"

						+	unique_id					=	(known	after	apply)

				}

		#	aws_iam_user.example[2]	will	be	created

		+	resource	"aws_iam_user"	"example"	{

						+	arn											=	(known	after	apply)

						+	force_destroy	=	false

						+	id												=	(known	after	apply)

						+	name										=	"morpheus"

						+	path										=	"/"

						+	unique_id					=	(known	after	apply)

				}

Plan:	3	to	add,	0	to	change,	0	to	destroy.

Note	that	once	you’ve	used	count	on	a	resource,	it	becomes	a	list	of
resources,	rather	than	just	one	resource.	Since
aws_iam_user.example	is	now	a	list	of	IAM	users,	instead	of	using
the	standard	syntax	to	read	an	attribute	from	that	resource
(<PROVIDER>_<TYPE>.<NAME>.<ATTRIBUTE>),	you	have	to
specify	which	IAM	user	you’re	interested	in	by	specifying	its	index	in	the
list	using	the	same	array	lookup	syntax:

<PROVIDER>_<TYPE>.<NAME>[INDEX].ATTRIBUTE

For	example,	if	you	wanted	to	provide	the	Amazon	Resource	Name
(ARN)	of	one	of	the	IAM	users	as	an	output	variable,	you	would	need	to

do	the	following:

output	"neo_arn"	{

		value							=	aws_iam_user.example[0].arn

		description	=	"The	ARN	for	user	Neo"

}

If	you	want	the	ARNs	of	all	the	IAM	users,	you	need	to	use	a	splat
expression,	“*”,	instead	of	the	index:

output	"all_arns"	{

		value							=	aws_iam_user.example[*].arn

		description	=	"The	ARNs	for	all	users"

}

When	you	run	the	apply	command,	the	neo_arn	output	will	contain
just	the	ARN	for	Neo	while	the	all_arns	output	will	contain	the	list	of
all	ARNs:

$	terraform	apply

(...)

Apply	complete!	Resources:	3	added,	0	changed,	0	

destroyed.

Outputs:

all_arns	=	[

		"arn:aws:iam::123456789012:user/neo",

		"arn:aws:iam::123456789012:user/trinity",

		"arn:aws:iam::123456789012:user/morpheus",

]

neo_arn	=	arn:aws:iam::123456789012:user/neo

Note	that	since	the	splat	expression	returns	a	list,	you	can	combine	it	with

other	expressions	and	built-in	functions.	For	example,	let’s	say	you
wanted	to	give	each	of	these	IAM	users	read-only	access	to	EC2.	You	may
remember	from	Chapter	2	that	by	default,	new	IAM	users	have	no
permissions	whatsoever,	and	that	to	grant	permissions,	you	can	attach
IAM	policies	to	those	IAM	users.	An	IAM	policy	is	a	JSON	document:

{

		"Statement":	[

				{

						"Effect":	"Allow",

						"Action":	["ec2:Describe*"],

						"Resource":	["*"]

				}

]

}

An	IAM	policy	consists	of	one	or	more	statements,	each	of	which
specifies	an	effect	(either	“Allow”	or	“Deny”),	on	one	or	more	actions
(e.g.,	"ec2:Describe*"	allows	all	API	calls	to	EC2	that	start	with	the
name	"Describe"),	on	one	or	more	resources	(e.g.,	"*"	means	“all
resources”).	Although	you	can	define	IAM	policies	using	a	JSON	string,
Terraform	also	provides	a	handy	data	source	called	the
aws_iam_policy_document	that	gives	you	a	more	concise	way	to
define	the	same	IAM	policy:

data	"aws_iam_policy_document"	"ec2_read_only"	{

		statement	{

				effect				=	"Allow"

				actions			=	["ec2:Describe*"]

				resources	=	["*"]

		}

}

To	create	a	new	managed	IAM	policy	from	this	document,	you	need	to	use
the	aws_iam_policy	resource	and	set	its	policy	parameter	to	the
json	output	attribute	of	the	aws_iam_policy_document	you	just
created:

resource	"aws_iam_policy"	"ec2_read_only"	{

		name			=	"ec2-read-only"

		policy	=	

data.aws_iam_policy_document.ec2_read_only.json

}

Finally,	to	attach	the	IAM	policy	to	your	new	IAM	users,	you	use	the
aws_iam_user_policy_attachment	resource:

resource	"aws_iam_user_policy_attachment"	"ec2_access"	{

		count						=	length(var.user_names)

		user							=	element(aws_iam_user.example[*].name,	

count.index)

		policy_arn	=	aws_iam_policy.ec2_read_only.arn

}

This	code	uses	the	count	parameter	to	“loop”	over	each	of	your	IAM
users	and	a	built-in	function	you	haven’t	seen	before	called	element	to
select	each	user’s	name	from	the	list	of	names	you	get	back	from	the	splat
expression	(aws_iam_user.example[*].name).	The	element
function	has	the	following	signature:

element(list,	<INDEX>)

This	function	returns	the	item	at	INDEX	in	the	given	list,	similar	to	an
array	lookup.	In	fact,	the	code	to	attach	the	IAM	policy	could’ve	also	been
written	as	follows:

resource	"aws_iam_user_policy_attachment"	"ec2_access"	{

		count						=	length(var.user_names)

		user							=	aws_iam_user.example[count.index].name

		policy_arn	=	aws_iam_policy.ec2_read_only.arn

}

The	difference	between	element	and	array	lookups	is	what	happens	if
you	try	to	access	an	index	that	is	out	of	bounds.	For	example,	if	you	tried
look	up	index	4	in	an	array	with	only	3	items,	the	array	lookup	would	give
you	an	error,	whereas	the	element	function	will	loop	around	using	a
standard	mod	algorithm,	returning	the	item	at	index	1.

Loops	with	for_each	expressions
The	count	parameter	is	useful	if	you	want	to	“loop”	over	an	an	entire
resource,	but	how	do	you	do	“loops”	for	inline	blocks	within	a	resource?
For	example,	how	are	tags	are	set	in	the	aws_autoscaling_group
resource:

resource	"aws_autoscaling_group"	"example"	{

		launch_configuration	=	

aws_launch_configuration.example.name

		vpc_zone_identifier		=	data.aws_subnet_ids.default.ids

		target_group_arns				=	[aws_lb_target_group.asg.arn]

		health_check_type				=	"ELB"

		min_size	=	var.min_size

		max_size	=	var.max_size

		tag	{

				key																	=	"Name"

				value															=	var.cluster_name

				propagate_at_launch	=	true

		}

}

Each	tag	must	be	specified	as	an	inline	block—that	is,	an	argument	you	set
within	a	resource	of	the	format:

resource	"xxx"	"yyy"	{

		<NAME>	{

				[CONFIG...]

		}

}

Where	NAME	is	the	name	of	the	argument	(e.g.,	tag)	and	CONFIG
consists	of	one	or	more	arguments	that	are	specific	to	that	argument	(e.g.,
key	and	value).	The	ASG	in	the	webserver-cluster	module
currently	hard-codes	a	single	tag,	but	you	may	want	to	allow	users	to	pass
in	custom	tags.	For	example,	you	could	add	a	new	map	input	variable
called	custom_tags	in	modules/services/webserver-cluster/variables.tf:

variable	"custom_tags"	{

		description	=	"Custom	tags	to	set	on	the	Instances	in	

the	ASG"

		type								=	map(string)

		default					=	{}

}

And	set	some	custom	tags	in	the	production	environment,	in
live/prod/services/webserver-cluster/main.tf,	as	follows:

module	"webserver_cluster"	{

		source	=	"../../../../modules/services/webserver-

cluster"

		cluster_name											=	"webservers-prod"

		db_remote_state_bucket	=	"(YOUR_BUCKET_NAME)"

		db_remote_state_key				=	"prod/data-

stores/mysql/terraform.tfstate"

		instance_type								=	"m4.large"

		min_size													=	2

		max_size													=	10

		enable_autoscaling			=	true

		custom_tags	=	{

				Owner						=	"team-foo"

				DeployedBy	=	"terraform"

		}

}

The	code	above	sets	a	couple	useful	tags:	the	Owner	tag	to	specifies
which	team	owns	this	ASG	and	the	DeployedBy	tag	specifies	that	this
infrastructure	was	deployed	using	Terraform	(indicating	this	infrastructure
shouldn’t	be	modified	manually,	as	discussed	in	“Valid	Plans	Can	Fail”).
It’s	typically	a	good	idea	to	come	up	with	a	tagging	standard	for	your	team
and	create	Terraform	modules	that	enforce	this	standard	as	code.

Now	that	the	tags	are	set,	how	do	you	actually	set	them	on	the
aws_autoscaling_group	resource?	What	you	need	is	to	do	a	for
loop	over	var.custom_tags,	similar	to	the	following	pseudo	code:

resource	"aws_autoscaling_group"	"example"	{

		launch_configuration	=	

aws_launch_configuration.example.name

		vpc_zone_identifier		=	data.aws_subnet_ids.default.ids

		target_group_arns				=	[aws_lb_target_group.asg.arn]

		health_check_type				=	"ELB"

		min_size	=	var.min_size

		max_size	=	var.max_size

		tag	{

				key																	=	"Name"

				value															=	var.cluster_name

				propagate_at_launch	=	true

		}

		#	This	is	just	pseudo	code.	It	won't	actually	work	in	

Terraform.

		for	(tag	in	var.custom_tags)	{

				tag	{

						key																	=	tag.key

						value															=	tag.value

						propagate_at_launch	=	true

				}

		}

}

The	psuedo	code	above	won’t	work,	but	Terraform	does	support
something	similar	in	a	for_each	expression,	which	has	the	following
syntax:

dynamic	"<VAR_NAME>"	{

		for_each	=	<COLLECTION>

		content	{

				[CONFIG...]

		}

}

Where	VAR_NAME	is	the	name	to	use	for	the	variable	that	will	be	used	to
store	the	value	each	“iteration”	(e.g.,	tag),	COLLECTION	is	a	list	or	map
to	iterate	over	(e.g.,	var.custom_tags),	and	the	content	block	is
what	to	generate	from	each	iteration.	You	can	use	<VAR_NAME>.key
and	<VAR_NAME>.value	within	the	content	block	to	access	the	key
and	value,	respectively,	of	the	current	item	in	the	COLLECTION.	Note
thatn	when	you’re	using	for_each	with	a	list,	the	key	will	be	the	index
and	the	value	will	be	the	item	in	the	list	at	that	index,	and	when	using
for_each	with	a	map,	the	key	and	value	will	be	one	of	the	key-value
pairs	in	the	map.

Putting	this	all	together,	here	is	how	you	can	dynamically	generate	tag
blocks	using	for_each	in	the	aws_autoscaling_group	resource:

resource	"aws_autoscaling_group"	"example"	{

		launch_configuration	=	

aws_launch_configuration.example.name

		vpc_zone_identifier		=	data.aws_subnet_ids.default.ids

		target_group_arns				=	[aws_lb_target_group.asg.arn]

		health_check_type				=	"ELB"

		min_size	=	var.min_size

		max_size	=	var.max_size

		tag	{

				key																	=	"Name"

				value															=	var.cluster_name

				propagate_at_launch	=	true

		}

		dynamic	"tag"	{

				for_each	=	var.custom_tags

				content	{

						key																	=	tag.key

						value															=	tag.value

						propagate_at_launch	=	true

				}

		}

}

If	you	run	terraform	apply	now,	you	should	see	a	plan	that	looks
something	like	this	(the	log	output	below	is	truncated	for	readability):

$	terraform	apply

Terraform	will	perform	the	following	actions:

		#	aws_autoscaling_group.example	will	be	updated	in-

place

		~	resource	"aws_autoscaling_group"	"example"	{

								(...)

								tag	{

												key																	=	"Name"

												propagate_at_launch	=	true

												value															=	"webservers-prod"

								}

						+	tag	{

										+	key																	=	"Owner"

										+	propagate_at_launch	=	true

										+	value															=	"team-foo"

								}

						+	tag	{

										+	key																	=	"DeployedBy"

										+	propagate_at_launch	=	true

										+	value															=	"terraform"

								}

				}

Plan:	0	to	add,	1	to	change,	0	to	destroy.

Do	you	want	to	perform	these	actions?

		Terraform	will	perform	the	actions	described	above.

		Only	'yes'	will	be	accepted	to	approve.

		Enter	a	value:

Enter	“yes”	to	deploy	the	changes	and	you	should	see	your	new	tags	show
up	in	the	EC2	web	console,	as	shown	in

Figure	5-1.	Dynamic	Auto	Scaling	Group	tags

Loops	with	for	expressions
You’ve	now	seen	how	to	loop	over	resources	and	inline	blocks,	but	what	if
you	need	a	loop	to	generate	a	single	value?	Let’s	take	a	brief	aside	to	look
at	some	examples	unrelated	to	the	web	server	cluster.	Imagine	you	wrote
some	Terraform	code	that	took	in	a	list	of	names:

variable	"names"	{

		description	=	"A	list	of	names"

		type								=	list(string)

		default					=	["neo",	"trinity",	"morpheus"]

}

How	could	you	convert	all	of	these	names	to	upper	case?	In	a	general
purpose	programming	language,	such	as	Python,	you	could	write	the
following	for-loop:

names	=	["neo",	"trinity",	"morpheus"]

upper_case_names	=	[]

for	name	in	names:

				upper_case_names.append(name.upper())

print	upper_case_names

#	Prints	out:	['NEO',	'TRINITY',	'MORPHEUS']

Python	offers	another	way	to	write	the	exact	same	code	in	one	line	using	a
syntax	known	as	a	list	comprehension:

names	=	["neo",	"trinity",	"morpheus"]

upper_case_names	=	[name.upper()	for	name	in	names]

print	upper_case_names

#	Prints	out:	['NEO',	'TRINITY',	'MORPHEUS']

Python	also	allows	you	to	filter	the	resulting	list	by	specifying	a	condition:

names	=	["neo",	"trinity",	"morpheus"]

short_upper_case_names	=	[name.upper()	for	name	in	names	

if	len(name)	<	5]

print	short_upper_case_names

#	Prints	out:	['NEO']

Terraform	offers	very	similar	functionality	in	the	form	of	a	for	expression.
The	basic	syntax	of	a	for	expression	is:

[for	<ITEM>	in	<LIST>	:	<OUTPUT>]

Where	LIST	is	a	list	to	loop	over,	ITEM	is	the	local	variable	name	to
assign	to	each	item	in	LIST,	and	OUTPUT	is	an	expression	that
transforms	ITEM	in	some	way.	For	example,	here	is	the	Terraform	code	to
convert	the	list	of	names	in	var.names	to	upper	case:

variable	"names"	{

		description	=	"A	list	of	names"

		type								=	list(string)

		default					=	["neo",	"trinity",	"morpheus"]

}

output	"upper_names"	{

		value	=	[for	name	in	var.names	:	upper(name)]

}

If	you	run	terraform	apply	on	this	code,	you	get	the	following
output:

$	terraform	apply

Apply	complete!	Resources:	0	added,	0	changed,	0	

destroyed.

Outputs:

upper_names	=	[

		"NEO",

		"TRINITY",

		"MORPHEUS",

]

Just	as	with	Python’s	list	comprehensions,	you	can	filter	the	resulting	list
by	specifying	a	condition:

variable	"names"	{

		description	=	"A	list	of	names"

		type								=	list(string)

		default					=	["neo",	"trinity",	"morpheus"]

}

output	"short_upper_names"	{

		value	=	[for	name	in	var.names	:	upper(name)	if	

length(name)	<	5]

}

Running	terraform	apply	on	this	code	gives	you:

short_upper_names	=	[

		"NEO",

]

Terraform’s	for	expressions	also	allow	you	to	loop	over	a	map	using	the
following	syntax:

[for	<KEY>,	<VALUE>	in	<MAP>	:	<OUTPUT>]

Where	MAP	is	a	map	to	loop	over,	KEY	and	VALUE	are	the	local	variable
names	to	assign	to	each	key-value	pair	in	MAP,	and	OUTPUT	is	an
expression	that	transforms	KEY	and	VALUE	in	some	way.	Here’s	an
example:

variable	"hero_thousand_faces"	{

		description	=	"map"

		type								=	map(string)

		default					=	{

				neo						=	"hero"

				trinity		=	"love	interest"

				morpheus	=	"mentor"

		}

}

output	"bios"	{

		value	=	[for	name,	role	in	var.hero_thousand_faces	:	

"${name}	is	the	${role}"]

}

When	you	run	terraform	apply	on	this	code,	you	get:

map_example	=	[

		"morpheus	is	the	mentor",

		"neo	is	the	hero",

		"trinity	is	the	love	interest",

]

You	can	also	use	for	expressions	to	output	a	map	rather	than	list	using	the
following	syntax:

#	For	looping	over	lists

{for	<ITEM>	in	<MAP>	:	<OUTPUT_KEY>	=>	<OUTPUT_VALUE>}

#	For	looping	over	maps

{for	<KEY>,	<VALUE>	in	<MAP>	:	<OUTPUT_KEY>	=>	

<OUTPUT_VALUE>}

The	only	differences	are	that	(a)	you	wrap	the	expression	in	curly	braces
rather	than	square	brackets	and	(b)	rather	than	outputting	a	single	value
each	iteration,	you	output	a	key	and	value,	separated	by	an	arrow.	For
example,	here	is	how	you	can	transform	map	to	make	all	the	keys	and
values	upper	case:

variable	"hero_thousand_faces"	{

		description	=	"map"

		type								=	map(string)

		default					=	{

				neo						=	"hero"

				trinity		=	"love	interest"

				morpheus	=	"mentor"

		}

}

output	"upper_roles"	{

		value	=	{for	name,	role	in	var.hero_thousand_faces	:	

upper(name)	=>	upper(role)}

}

The	output	from	running	this	code	will	be:

upper_roles	=	{

		"MORPHEUS"	=	"MENTOR"

		"NEO"	=	"HERO"

		"TRINITY"	=	"LOVE	INTEREST"

}

Loops	with	the	for	string	directive
Earlier	in	the	book,	you	learned	about	string	interpolations,	which	allow
you	to	reference	Terraform	code	within	strings:

"Hello,	${var.name}"

String	directives	allow	you	to	use	control	statements,	such	as	for
expressions	and	if-statements,	within	strings	using	a	similar	syntax	to
string	interpolations,	but	instead	of	a	dollar	sign	and	curly	braces	(${…}),
you	use	a	percent	sign	and	curly	braces	(%{…}).

Terraform	supports	two	types	of	string	directives:	for	loops	and
conditionals.	In	this	section,	we’ll	go	over	for	loops;	we’ll	come	back	to
conditionals	later	in	the	chapter.	The	for	string	directive	uses	the	following
syntax:

%{	for	<ITEM>	in	<COLLECTION>	}<BODY>%{	endfor	}

Where	COLLECTION	is	a	list	or	map	to	loop	over,	ITEM	is	the	local
variable	name	to	assign	to	each	item	in	COLLECTION,	and	BODY	is	what
to	render	each	iteration	(which	can	reference	ITEM).	Here’s	an	example:

variable	"names"	{

		description	=	"Names	to	render"

		type								=	list(string)

		default					=	["neo",	"trinity",	"morpheus"]

}

output	"for_directive"	{

		value	=	<<EOF

%{	for	name	in	var.names	}

		${name}

%{	endfor	}

EOF

}

When	you	run	terraform	apply,you	get	the	output:

$	terraform	apply

Apply	complete!	Resources:	0	added,	0	changed,	0	

destroyed.

Outputs:

for_directive	=

		neo

		trinity

		morpheus

Note	all	the	extra	newlines.	You	can	use	a	strip	marker	(~)	in	your	string
directive	to	consume	all	of	the	whitespace	(spaces	and	newlines)	either
before	the	string	directive	(if	the	marker	appears	at	the	beginning	of	the

string	directive)	or	after	(if	the	marker	appears	at	the	end	of	the	string
directive):

output	"for_directive_strip_marker"	{

		value	=	<<EOF

%{~	for	name	in	var.names	}

		${name}

%{~	endfor	}

EOF

}

This	updated	version	gives	you	the	following	output:

for_directive_strip_marker	=

		neo

		trinity

		morpheus

Conditionals
Just	as	Terraform	offers	several	different	ways	to	do	loops,	there	are	also
several	different	ways	to	do	conditionals,	each	intended	to	be	used	in	a
slightly	different	condition:

1.	 count	parameter:	conditional	resources.

2.	 for_each	and	for	expressions:	conditional	inline	blocks
within	a	resource.

3.	 if	string	directive:	conditionals	within	a	string.

Conditionals	with	the	count	parameter
The	count	parameter	you	saw	earlier	lets	you	do	a	basic	loop.	If	you’re
clever,	you	can	use	the	same	mechanism	to	do	a	basic	conditional.	Let’s

start	by	looking	at	if-statements	in	the	next	section	and	then	move	on	to	if-
else	statements	in	the	section	after.

IF-STATEMENTS	WITH	THE	COUNT	PARAMETER

In	Chapter	4,	you	created	a	Terraform	module	that	could	be	used	as
“blueprint”	for	deploying	web	server	clusters.	The	module	created	an	Auto
Scaling	Group	(ASG),	Application	Load	Balancer	(ALB),	security	groups,
and	a	number	of	other	resources.	One	thing	the	module	did	not	create	was
the	auto	scaling	schedule.	Since	you	only	want	to	scale	the	cluster	out	in
production,	you	defined	the	aws_autoscaling_schedule	resources
directly	in	the	production	configurations	under
live/prod/services/webserver-cluster/main.tf.	Is	there	a	way	you	could
define	the	aws_autoscaling_schedule	resources	in	the
webserver-cluster	module	and	conditionally	create	them	for	some
users	of	the	module	and	not	create	them	for	others?

Let’s	give	it	a	shot.	The	first	step	is	to	add	a	boolean	input	variable	in
modules/services/webserver-cluster/variables.tf	that	can	be	used	to	specify
whether	the	module	should	enable	auto	scaling:

variable	"enable_autoscaling"	{

		description	=	"If	set	to	true,	enable	auto	scaling"

		type								=	bool

}

Now,	if	you	had	a	general-purpose	programming	language,	you	could	use
this	input	variable	in	an	if-statement:

#	This	is	just	pseudo	code.	It	won't	actually	work	in	

Terraform.

if	var.enable_autoscaling	{

		resource	"aws_autoscaling_schedule"	

"scale_out_during_business_hours"	{

				scheduled_action_name		=	"scale-out-during-business-

hours"

				min_size															=	2

				max_size															=	10

				desired_capacity							=	10

				recurrence													=	"0	9	*	*	*"

				autoscaling_group_name	=	

aws_autoscaling_group.example.name

		}

		resource	"aws_autoscaling_schedule"	

"scale_in_at_night"	{

				scheduled_action_name		=	"scale-in-at-night"

				min_size															=	2

				max_size															=	10

				desired_capacity							=	2

				recurrence													=	"0	17	*	*	*"

				autoscaling_group_name	=	

aws_autoscaling_group.example.name

		}

}

Terraform	doesn’t	support	if-statements,	so	this	code	won’t	work.
However,	you	can	accomplish	the	same	thing	by	using	the	count
parameter	and	taking	advantage	of	two	properties:

1.	 If	you	set	count	to	1	on	a	resource,	you	get	one	copy	of	that
resource;	if	you	set	count	to	0,	that	resource	is	not	created	at	all.

2.	 Terraform	supports	conditional	expressions	of	the	format
<CONDITION>	?	<TRUE_VAL>	:	<FALSE_VAL>.	This
ternary	syntax,	which	may	be	familiar	to	you	from	other
programming	languages,	will	evaluate	the	boolean	logic	in
CONDITION,	and	if	the	result	is	true,	it	will	return
TRUE_VAL,	and	if	the	result	is	false,	it’ll	return	FALSE_VAL.

Putting	these	two	ideas	together,	you	can	update	the	webserver-

cluster	module	as	follows:

resource	"aws_autoscaling_schedule"	

"scale_out_during_business_hours"	{

		count	=	var.enable_autoscaling	?	1	:	0

		scheduled_action_name		=	"${var.cluster_name}-scale-

out-during-business-hours"

		min_size															=	2

		max_size															=	10

		desired_capacity							=	10

		recurrence													=	"0	9	*	*	*"

		autoscaling_group_name	=	

aws_autoscaling_group.example.name

}

resource	"aws_autoscaling_schedule"	"scale_in_at_night"	

{

		count	=	var.enable_autoscaling	?	1	:	0

		scheduled_action_name		=	"${var.cluster_name}-scale-

in-at-night"

		min_size															=	2

		max_size															=	10

		desired_capacity							=	2

		recurrence													=	"0	17	*	*	*"

		autoscaling_group_name	=	

aws_autoscaling_group.example.name

}

If	var.enable_autoscaling	is	true,	the	count	parameter	for
each	of	the	aws_autoscaling_schedule	resources	will	be	set	to	1,
so	one	of	each	will	be	created.	If	var.enable_autoscaling	is
false,	the	count	parameter	for	each	of	the
aws_autoscaling_schedule	resources	will	be	set	to	0,	so	neither
one	will	be	created.	This	is	exactly	the	conditional	logic	you	want!

You	can	now	update	the	usage	of	this	module	in	staging	(in

live/stage/services/webserver-cluster/main.tf)	to	disable	auto	scaling	by
setting	enable_autoscaling	to	false:

module	"webserver_cluster"	{

		source	=	"../../../../modules/services/webserver-

cluster"

		cluster_name											=	"webservers-stage"

		db_remote_state_bucket	=	"(YOUR_BUCKET_NAME)"

		db_remote_state_key				=	"stage/data-

stores/mysql/terraform.tfstate"

		instance_type								=	"t2.micro"

		min_size													=	2

		max_size													=	2

		enable_autoscaling			=	false

}

Similarly,	you	can	update	the	usage	of	this	module	in	production	(in
live/prod/services/webserver-cluster/main.tf)	to	enable	auto	scaling	by
setting	enable_autoscaling	to	true	(make	sure	to	also	remove	the
custom	aws_autoscaling_schedule	resources	that	were	in	the
production	environment	from	Chapter	4):

module	"webserver_cluster"	{

		source	=	"../../../../modules/services/webserver-

cluster"

		cluster_name											=	"webservers-prod"

		db_remote_state_bucket	=	"(YOUR_BUCKET_NAME)"

		db_remote_state_key				=	"prod/data-

stores/mysql/terraform.tfstate"

		instance_type								=	"m4.large"

		min_size													=	2

		max_size													=	10

		enable_autoscaling			=	true

		custom_tags	=	{

				Owner						=	"team-foo"

				DeployedBy	=	"terraform"

		}

}

This	approach	works	well	if	the	user	passes	an	explicit	boolean	value	to
your	module,	but	what	do	you	do	if	the	boolean	is	the	result	of	a	more
complicated	comparison,	such	as	string	equality?	Let’s	go	through	a	more
complicated	example.

Imagine	that	as	part	of	the	webserver-cluster	module,	you	wanted
to	create	a	set	of	CloudWatch	alarms.	A	CloudWatch	alarm	can	be
configured	to	notify	you	via	a	variety	of	mechanisms	(e.g.,	email,	text
message)	if	a	specific	metric	exceeds	a	predefined	threshold.	For	example,
here	is	how	you	could	use	the	aws_cloudwatch_metric_alarm
resource	in	modules/services/webserver-cluster/main.tf	to	create	an	alarm
that	goes	off	if	the	average	CPU	utilization	in	the	cluster	is	over	90%
during	a	5-minute	period:

resource	"aws_cloudwatch_metric_alarm"	

"high_cpu_utilization"	{

		alarm_name		=	"${var.cluster_name}-high-cpu-

utilization"

		namespace			=	"AWS/EC2"

		metric_name	=	"CPUUtilization"

		dimensions	=	{

				AutoScalingGroupName	=	

aws_autoscaling_group.example.name

		}

		comparison_operator	=	"GreaterThanThreshold"

		evaluation_periods		=	1

		period														=	300

		statistic											=	"Average"

		threshold											=	90

		unit																=	"Percent"

}

This	works	fine	for	a	CPU	Utilization	alarm,	but	what	if	you	wanted	to
add	another	alarm	that	goes	off	when	CPU	credits	are	low? 	Here	is	a
CloudWatch	alarm	that	goes	off	if	your	web	server	cluster	is	almost	out	of
CPU	credits:

resource	"aws_cloudwatch_metric_alarm"	

"low_cpu_credit_balance"	{

		alarm_name	=	"${var.cluster_name}-low-cpu-credit-

balance"

		namespace			=	"AWS/EC2"

		metric_name	=	"CPUCreditBalance"

		dimensions	=	{

				AutoScalingGroupName	=	

aws_autoscaling_group.example.name

		}

		comparison_operator	=	"LessThanThreshold"

		evaluation_periods		=	1

		period														=	300

		statistic											=	"Minimum"

		threshold											=	10

		unit																=	"Count"

}

The	catch	is	that	CPU	credits	only	apply	to	tXXX	Instances	(e.g.,
t2.micro,	t2.medium,	etc).	Larger	instance	types	(e.g.,	m4.large)
don’t	use	CPU	credits	and	don’t	report	a	CPUCreditBalance	metric,
so	if	you	create	such	an	alarm	for	those	instances,	the	alarm	will	always	be
stuck	in	the	“INSUFFICIENT_DATA”	state.	Is	there	a	way	to	create	an
alarm	only	if	var.instance_type	starts	with	the	letter	“t”?

You	could	add	a	new	boolean	input	variable	called

1

var.is_t2_instance,	but	that	would	be	redundant	with
var.instance_type,	and	you’d	most	likely	forget	to	update	one
when	updating	the	other.	A	better	alternative	is	to	use	a	conditional:

resource	"aws_cloudwatch_metric_alarm"	

"low_cpu_credit_balance"	{

		count	=	format("%.1s",	var.instance_type)	==	"t"	?	1	:	

0

		alarm_name	=	"${var.cluster_name}-low-cpu-credit-

balance"

		namespace			=	"AWS/EC2"

		metric_name	=	"CPUCreditBalance"

		dimensions	=	{

				AutoScalingGroupName	=	

aws_autoscaling_group.example.name

		}

		comparison_operator	=	"LessThanThreshold"

		evaluation_periods		=	1

		period														=	300

		statistic											=	"Minimum"

		threshold											=	10

		unit																=	"Count"

}

The	alarm	code	is	the	same	as	before,	except	for	the	relatively	complicated
count	parameter:

		count	=	format("%.1s",	var.instance_type)	==	"t"	?	1	:	

0

This	code	uses	the	format	function	to	extract	just	the	first	character	from
var.instance_type.	If	that	character	is	a	“t”	(e.g.,	t2.micro),	it
sets	the	count	to	1;	otherwise,	it	sets	the	count	to	0.	This	way,	the	alarm
is	only	created	for	instance	types	that	actually	have	a

CPUCreditBalance	metric.

IF-ELSE-STATEMENTS	WITH	THE	COUNT	PARAMETER

Now	that	you	know	how	to	do	an	if-statement,	what	about	an	if-else-
statement?

Earlier	in	this	chapter,	you	created	several	IAM	users	with	read-only
access	to	EC2.	Imagine	that	you	wanted	to	give	one	of	these	users,	neo,
access	to	CloudWatch	as	well,	but	to	allow	the	person	applying	the
Terraform	configurations	to	decide	if	neo	got	only	read	access	or	both	read
and	write	access.	This	is	a	slightly	contrived	example,	but	it	makes	it	easy
to	demonstrate	a	simple	type	of	if-else-statement,	where	all	that	matters	is
that	one	of	the	if	or	else	branches	gets	executed,	and	the	rest	of	the
Terraform	code	doesn’t	need	to	know	which	one.

Here	is	an	IAM	policy	that	allows	read-only	access	to	CloudWatch:

resource	"aws_iam_policy"	"cloudwatch_read_only"	{

		name			=	"cloudwatch-read-only"

		policy	=	

data.aws_iam_policy_document.cloudwatch_read_only.json

}

data	"aws_iam_policy_document"	"cloudwatch_read_only"	{

		statement	{

				effect				=	"Allow"

				actions			=	[

						"cloudwatch:Describe*",

						"cloudwatch:Get*",

						"cloudwatch:List*"

]

				resources	=	["*"]

		}

}

And	here	is	an	IAM	policy	that	allows	full	(read	and	write)	access	to
CloudWatch:

resource	"aws_iam_policy"	"cloudwatch_full_access"	{

		name			=	"cloudwatch-full-access"

		policy	=	

data.aws_iam_policy_document.cloudwatch_full_access.json

}

data	"aws_iam_policy_document"	"cloudwatch_full_access"	

{

		statement	{

				effect				=	"Allow"

				actions			=	["cloudwatch:*"]

				resources	=	["*"]

		}

}

The	goal	is	to	attach	one	of	these	IAM	policies	to	neo,	based	on	the	value
of	a	new	input	variable	called
give_neo_cloudwatch_full_access:

variable	"give_neo_cloudwatch_full_access"	{

		description	=	"If	true,	neo	gets	full	access	to	

CloudWatch"

		type								=	bool

}

If	you	were	using	a	general-purpose	programming	language,	you	might
write	an	if-else-statement	that	looks	like	this:

#	This	is	just	pseudo	code.	It	won't	actually	work	in	

Terraform.

if	var.give_neo_cloudwatch_full_access	{

		resource	"aws_iam_user_policy_attachment"	

"neo_cloudwatch_full_access"	{

				user							=	aws_iam_user.example[0].name

				policy_arn	=	

aws_iam_policy.cloudwatch_full_access.arn

		}

}	else	{

		resource	"aws_iam_user_policy_attachment"	

"neo_cloudwatch_read_only"	{

				user							=	aws_iam_user.example[0].name

				policy_arn	=	aws_iam_policy.cloudwatch_read_only.arn

		}

}

To	do	this	in	Terraform,	you	can	use	the	count	parameter	and	a
conditional	expression	on	each	of	the	resources:

resource	"aws_iam_user_policy_attachment"	

"neo_cloudwatch_full_access"	{

		count	=	var.give_neo_cloudwatch_full_access	?	1	:	0

		user							=	aws_iam_user.example[0].name

		policy_arn	=	aws_iam_policy.cloudwatch_full_access.arn

}

resource	"aws_iam_user_policy_attachment"	

"neo_cloudwatch_read_only"	{

		count	=	var.give_neo_cloudwatch_full_access	?	0	:	1

		user							=	aws_iam_user.example[0].name

		policy_arn	=	aws_iam_policy.cloudwatch_read_only.arn

}

This	code	contains	two	aws_iam_user_policy_attachment
resources.	The	first	one,	which	attaches	the	CloudWatch	full	access
permissions,	has	a	conditional	expression	that	will	evaluate	to	1	if
var.give_neo_cloudwatch_full_access	is	true	and	0
otherwise	(this	is	the	if-clause).	The	second	one,	which	attaches	the
CloudWatch	read-only	permissions,	has	a	conditional	expression	that	does

the	exact	opposite,	evaluating	to	0	if
var.give_neo_cloudwatch_full_access	is	true	and	1
otherwise	(this	is	the	else-clause).

This	approach	works	well	if	your	Terraform	code	doesn’t	need	to	know
which	of	the	if	or	else	clauses	actually	got	executed.	But	what	if	you	need
to	access	some	output	attribute	on	the	resource	that	comes	out	of	the	if	or
else	clause?	For	example,	what	if	you	wanted	to	offer	two	different	User
Data	scripts	in	the	webserver-cluster	module	and	allow	users	to
pick	which	one	gets	executed?	Currently,	the	webserver-cluster
module	pulls	in	the	user-data.sh	script	via	a	template_file	data
source:

data	"template_file"	"user_data"	{

		template	=	file("${path.module}/user-data.sh")

		vars	=	{

				server_port	=	var.server_port

				db_address		=	

data.terraform_remote_state.db.outputs.address

				db_port					=	

data.terraform_remote_state.db.outputs.port

		}

}

The	current	user-data.sh	script	looks	like	this:

#!/bin/bash

cat	>	index.html	<<EOF

<h1>Hello,	World</h1>

<p>DB	address:	${db_address}</p>

<p>DB	port:	${db_port}</p>

EOF

nohup	busybox	httpd	-f	-p	${server_port}	&

Now,	imagine	that	you	wanted	to	allow	some	of	your	web	server	clusters
to	use	this	alternative,	shorter	script,	called	user-data-new.sh:

#!/bin/bash

echo	"Hello,	World,	v2"	>	index.html

nohup	busybox	httpd	-f	-p	${server_port}	&

To	use	this	script,	you	need	a	new	template_file	data	source:

data	"template_file"	"user_data_new"	{

		template	=	file("${path.module}/user-data-new.sh")

		vars	=	{

				server_port	=	var.server_port

		}

}

The	question	is,	how	can	you	allow	the	user	of	the	webserver-
cluster	module	to	pick	from	one	of	these	User	Data	scripts?	As	a	first
step,	you	could	add	a	new	boolean	input	variable	in
modules/services/webserver-cluster/variables.tf:

variable	"enable_new_user_data"	{

		description	=	"If	set	to	true,	use	the	new	User	Data	

script"

		type								=	bool

}

If	you	were	using	a	general-purpose	programming	language,	you	could
add	an	if-else-statement	to	the	launch	configuration	to	pick	between	the

two	User	Data	template_file	options	as	follows:

#	This	is	just	pseudo	code.	It	won't	actually	work	in	

Terraform.

resource	"aws_launch_configuration"	"example"	{

		image_id								=	"ami-0c55b159cbfafe1f0"

		instance_type			=	var.instance_type

		security_groups	=	[aws_security_group.instance.id]

		if	var.enable_new_user_data	{

				user_data	=	

data.template_file.user_data_new.rendered

		}	else	{

				user_data	=	data.template_file.user_data.rendered

		}

}

To	make	this	work	with	real	Terraform	code,	you	first	need	to	use	the	if-
else-statement	trick	from	before	to	ensure	that	only	one	of	the
template_file	data	sources	is	actually	created:

data	"template_file"	"user_data"	{

		count	=	var.enable_new_user_data	?	0	:	1

		template	=	file("${path.module}/user-data.sh")

		vars	=	{

				server_port	=	var.server_port

				db_address		=	

data.terraform_remote_state.db.outputs.address

				db_port					=	

data.terraform_remote_state.db.outputs.port

		}

}

data	"template_file"	"user_data_new"	{

		count	=	var.enable_new_user_data	?	1	:	0

		template	=	file("${path.module}/user-data-new.sh")

		vars	=	{

				server_port	=	var.server_port

		}

}

If	var.enable_new_user_data	is	true,	then
data.template_file.user_data_new	will	be	created	and
data.template_file.user_data	will	not;	if	it’s	false,	it’ll	be
the	other	way	around.	All	you	have	to	do	now	is	to	set	the	user_data
parameter	of	the	aws_launch_configuration	resource	to	the
template_file	that	actually	exists.	To	do	this,	you	can	use	another
conditional	expression:

resource	"aws_launch_configuration"	"example"	{

		image_id								=	"ami-0c55b159cbfafe1f0"

		instance_type			=	var.instance_type

		security_groups	=	[aws_security_group.instance.id]

		user_data	=	(

				length(data.template_file.user_data[*])	>	0

						?	data.template_file.user_data[0].rendered

						:	data.template_file.user_data_new[0].rendered

)

}

Let’s	break	the	large	value	for	the	user_data	parameter	down.	First,
take	a	look	at	the	boolean	condition	being	evaluated:

length(data.template_file.user_data[*])	>	0

Note	that	the	two	template_file	data	sources	are	both	lists,	as	they

both	use	the	count	parameter,	so	you	have	to	use	array	syntax	with	them.
However,	as	one	of	these	lists	will	be	of	length	1	and	the	other	of	length	0,
you	can’t	directly	access	a	specific	index	(e.g.,
data.template_file.user_data[0]),	as	that	list	may	be	empty.
The	solution	is	to	use	using	a	splat	expression,	which	will	always	return	a
list	(albeit	possibly	an	empty	one),	and	to	check	that	list’s	length.

Using	that	list’s	length,	we	then	pick	from	one	of	the	following
expressions:

?	data.template_file.user_data[0].rendered

:	data.template_file.user_data_new[0].rendered

Terraform	does	lazy	evaluation	for	conditional	results,	so	the	true	value
will	only	be	evaluated	if	the	condition	was	true	and	the	false	value	will
only	be	evaluated	if	the	condition	was	false.	That	makes	it	safe	to	look	up
index	0	on	user_data	and	user_data_new,	as	we	know	that	only
the	one	with	the	non-empty	list	will	actually	be	evaluated.

You	can	now	try	out	the	new	User	Data	script	in	the	staging	environment
by	setting	the	enable_new_user_data	parameter	to	true	in
live/stage/services/webserver-cluster/main.tf:

module	"webserver_cluster"	{

		source	=	"../../../../modules/services/webserver-

cluster"

		cluster_name											=	"webservers-stage"

		db_remote_state_bucket	=	"(YOUR_BUCKET_NAME)"

		db_remote_state_key				=	"stage/data-

stores/mysql/terraform.tfstate"

		instance_type								=	"t2.micro"

		min_size													=	2

		max_size													=	2

		enable_autoscaling			=	false

		enable_new_user_data	=	true

}

In	the	production	environment,	you	can	stick	with	the	old	version	of	the
script	by	setting	enable_new_user_data	to	false	in
live/prod/services/webserver-cluster/main.tf:

module	"webserver_cluster"	{

		source	=	"../../../../modules/services/webserver-

cluster"

		cluster_name											=	"webservers-prod"

		db_remote_state_bucket	=	"(YOUR_BUCKET_NAME)"

		db_remote_state_key				=	"prod/data-

stores/mysql/terraform.tfstate"

		instance_type								=	"m4.large"

		min_size													=	2

		max_size													=	10

		enable_autoscaling			=	true

		enable_new_user_data	=	false

		custom_tags	=	{

				Owner						=	"team-foo"

				DeployedBy	=	"terraform"

		}

}

Using	count	and	built-in	functions	to	simulate	if-else-statements	is	a	bit
of	a	hack,	but	it’s	one	that	works	fairly	well,	and	as	you	can	see	from	the
code,	it	allows	you	to	conceal	lots	of	complexity	from	your	users	so	that
they	get	to	work	with	a	clean	and	simple	API.

Conditionals	with	for_each	and	for	expressions

Now	that	you	understand	how	to	do	conditional	logic	with	resources	using
the	count	parameter,	you	can	probably	guess	that	you	can	use	a	similar
strategy	to	do	conditional	logic	with	inline	blocks	inside	of	a	resource	by
using	a	for_each	expression.	If	you	pass	a	for_each	expression	an
empty	list,	it	will	produce	0	inline	blocks;	if	you	pass	it	a	non-empty	list,
it’ll	create	one	or	more	inline	blocks.	The	only	question	is,	how	can	you
conditionally	decide	of	the	list	should	be	empty	or	not?

The	answer	is	to	combine	the	for_each	expression	with	the	for
expression!	For	example,	recall	the	way	the	webserver-cluster
module	in	modules/services/webserver-cluster/main.tf	sets	tags:

		dynamic	"tag"	{

				for_each	=	var.custom_tags

				content	{

						key																	=	tag.key

						value															=	tag.value

						propagate_at_launch	=	true

				}

		}

If	var.custom_tags	is	empty,	then	the	for_each	expression	will
have	nothing	to	loop	over,	so	no	tags	will	be	set.	In	other	words,	you
already	have	some	conditional	logic	here.	But	you	can	go	even	further,	by
combining	the	for_each	expression	with	a	for	expression	as	follows:

		dynamic	"tag"	{

				for_each	=	{

						for	key,	value	in	var.custom_tags:

						key	=>	upper(value)

						if	key	!=	"Name"

				}

				content	{

						key																	=	tag.key

						value															=	tag.value

						propagate_at_launch	=	true

				}

		}

The	nested	for	expression	loops	over	var.custom_tags,	converts
each	value	to	upper	case	(e.g.,	perhaps	for	consistency),	and	uses	a
conditional	in	the	for	expression	to	filter	out	any	key	set	to	Name,	as	the
module	already	sets	its	own	Name	tag.	By	filtering	values	in	the	for
expression,	you	can	implement	any	arbitrary	conditional	logic	you	want
for	inline	blocks!

Conditionals	with	the	if	string	directive
Earlier	in	the	chapter,	you	used	the	for	string	directive	to	do	loops	within
a	string.	Let’s	now	look	at	a	second	type	of	for	directive,	which	has	the
following	form:

%{	if	<CONDITION>	}<TRUEVAL>%{	endif	}

Where	CONDITION	is	any	expression	that	evaluates	to	a	boolean	and
TRUEVAL	is	the	expression	to	render	if	CONDITION	evaluates	to	true.
You	can	optionally	include	an	else	clause	as	follows:

%{	if	<CONDITION>	}<TRUEVAL>%{	else	}<FALSEVAL>%{	endif	

}

Where	FALSEVAL	is	the	expression	to	render	if	CONDITION	evaluates	to
false.	Here’s	an	example:

variable	"name"	{

		description	=	"A	name	to	render"

		type								=	string

}

output	"if_else_directive"	{

		value	=	"Hello,	%{	if	var.name	!=	""	}${var.name}%{	

else	}(unnamed)%{	endif	}"

}

If	you	run	terraform	apply,	setting	the	name	variable	to	“World”,
you’ll	see:

$	terraform	apply	-var	name="World"

Apply	complete!	Resources:	0	added,	0	changed,	0	

destroyed.

Outputs:

if_else_directive	=	Hello,	World

If	you	run	terraform	apply	with	name	set	to	an	empty	string,	you
instead	get:

$	terraform	apply	-var	name=""

Apply	complete!	Resources:	0	added,	0	changed,	0	

destroyed.

Outputs:

if_else_directive	=	Hello,	(unnamed)

Zero-Downtime	Deployment
Now	that	your	module	has	a	clean	and	simple	API	for	deploying	a	web

server	cluster,	an	important	question	to	ask	is,	how	do	you	update	that
cluster?	That	is,	when	you	have	made	changes	to	your	code,	how	do	you
deploy	a	new	AMI	across	the	cluster?	And	how	do	you	do	it	without
causing	downtime	for	your	users?

The	first	step	is	to	expose	the	AMI	as	an	input	variable	in
modules/services/webserver-cluster/variables.tf.	In	real-world	examples,
this	is	all	you	would	need,	as	the	actual	web	server	code	would	be	defined
in	the	AMI.	However,	in	the	simplified	examples	in	this	book,	all	of	the
web	server	code	is	actually	in	the	User	Data	script,	and	the	AMI	is	just	a
vanilla	Ubuntu	image.	Switching	to	a	different	version	of	Ubuntu	won’t
make	for	much	of	a	demonstration,	so	in	addition	to	the	new	AMI	input
variable,	you	can	also	add	an	input	variable	to	control	the	text	the	User
Data	script	returns	from	its	one-liner	HTTP	server:

variable	"ami"	{

		description	=	"The	AMI	to	run	in	the	cluster"

		default					=	"ami-0c55b159cbfafe1f0"

		type								=	string

}

variable	"server_text"	{

		description	=	"The	text	the	web	server	should	return"

		default					=	"Hello,	World"

		type								=	string

}

Earlier	in	the	chapter,	to	practice	with	if-else-statements,	you	created	two
User	Data	scripts.	Let’s	consolidate	that	back	down	to	one	to	keep	things
simple.	First,	in	modules/services/webserver-cluster/variables.tf,	remove
the	enable_new_user_data	input	variable.	Second,	in
modules/services/webserver-cluster/main.tf,	remove	the
template_file	resource	called	user_data_new.	Third,	in	the	same

file,	update	the	other	template_file	resource,	called	user_data,	to
no	longer	use	the	enable_new_user_data	input	variable,	and	to	add
the	new	server_text	input	variable	to	its	vars	block:

data	"template_file"	"user_data"	{

		template	=	file("${path.module}/user-data.sh")

		vars	=	{

				server_port	=	var.server_port

				db_address		=	

data.terraform_remote_state.db.outputs.address

				db_port					=	

data.terraform_remote_state.db.outputs.port

				server_text	=	var.server_text

		}

}

Now	you	need	to	update	the	modules/services/webserver-cluster/user-
data.sh	Bash	script	to	use	this	server_text	variable	in	the	<h1>	tag	it
returns:

#!/bin/bash

cat	>	index.html	<<EOF

<h1>${server_text}</h1>

<p>DB	address:	${db_address}</p>

<p>DB	port:	${db_port}</p>

EOF

nohup	busybox	httpd	-f	-p	${server_port}	&

Finally,	find	the	launch	configuration	in	modules/services/webserver-
cluster/main.tf,	set	its	user_data	parameter	to	the	remaining
template_file	(the	one	called	user_data),	and	set	its	ami
parameter	to	the	new	ami	input	variable:

resource	"aws_launch_configuration"	"example"	{

		image_id								=	var.ami

		instance_type			=	var.instance_type

		security_groups	=	[aws_security_group.instance.id]

		user_data	=	data.template_file.user_data.rendered

}

Now,	in	the	staging	environment,	in	live/stage/services/webserver-
cluster/main.tf,	you	can	set	the	new	ami	and	server_text	parameters
and	remove	the	enable_new_user_data	parameter:

module	"webserver_cluster"	{

		source	=	"../../../../modules/services/webserver-

cluster"

		ami									=	"ami-0c55b159cbfafe1f0"

		server_text	=	"New	server	text"

		cluster_name											=	"webservers-stage"

		db_remote_state_bucket	=	"(YOUR_BUCKET_NAME)"

		db_remote_state_key				=	"stage/data-

stores/mysql/terraform.tfstate"

		instance_type						=	"t2.micro"

		min_size											=	2

		max_size											=	2

		enable_autoscaling	=	false

}

This	code	uses	the	same	Ubuntu	AMI,	but	changes	the	server_text	to
a	new	value.	If	you	run	the	plan	command,	you	should	see	something
like	the	following	(I’ve	omitted	some	of	the	output	for	clarity):

Terraform	will	perform	the	following	actions:

		#	

module.webserver_cluster.aws_autoscaling_group.example	

will	be	updated	in-place

		~	resource	"aws_autoscaling_group"	"example"	{

								id																								=	"webservers-stage-

terraform-20190516131456645800000001"

						~	launch_configuration						=	"terraform-

20190516131456645800000001"	->	(known	after	apply)

								(...)

				}

		#	

module.webserver_cluster.aws_launch_configuration.example

	must	be	replaced

+/-	resource	"aws_launch_configuration"	"example"	{

						~	id																										=	"terraform-

20190516131456645800000001"	->	(known	after	apply)

								image_id																				=	"ami-

0c55b159cbfafe1f0"

								instance_type															=	"t2.micro"

						~	name																								=	"terraform-

20190516131456645800000001"	->	(known	after	apply)

						~	user_data																			=	

"bd7c0a6de4da4d6458e8b7447650b5616099dcb1"	->	

"4919a13b8fb5226801746cfa14af45918b3db793"	#	forces	

replacement

								(...)

				}

Plan:	1	to	add,	1	to	change,	1	to	destroy.

As	you	can	see,	Terraform	wants	to	make	two	changes:	first,	replace	the
old	launch	configuration	with	a	new	one	that	has	the	updated
user_data,	and	second,	modify	the	Auto	Scaling	Group	in	place	to
reference	the	new	launch	configuration.	The	problem	is	that	merely
referencing	the	new	launch	configuration	will	have	no	effect	until	the
Auto	Scaling	Group	launches	new	EC2	Instances.	So	how	do	you	tell	the
Auto	Scaling	Group	to	deploy	new	Instances?

One	option	is	to	destroy	the	ASG	(e.g.,	by	running	terraform

destroy)	and	then	re-create	it	(e.g.,	by	running	terraform	apply).
The	problem	is	that	after	you	delete	the	old	ASG,	your	users	will
experience	downtime	until	the	new	ASG	comes	up.	What	you	want	to	do
instead	is	a	zero-downtime	deployment.	The	way	to	accomplish	that	is	to
create	the	replacement	ASG	first	and	then	destroy	the	original	one.	As	it
turns	out,	Terraform	has	a	lifecycle	setting	that	does	exactly	this!

You	first	saw	lifecycle	settings	in	Chapter	3	with
prevent_destroy.	Another	lifecycle	setting	that	is	particularly
useful	is	called	create_before_destroy.	Normally,	when	replacing
a	resource,	Terraform	deletes	the	old	resource	first	and	then	creates	its
replacement.	However,	if	you	set	create_before_destroy	to
true,	Terraform	will	work	in	the	opposite	order,	creating	the	replacement
resource	first	and	then	deleting	the	old	resource.

Here’s	how	you	can	take	advantage	of	this	lifecycle	setting	to	get	a	zero-
downtime	deployment:

1.	 Configure	the	name	parameter	of	the	ASG	to	depend	directly	on
the	name	of	the	launch	configuration.	That	way,	each	time	the
launch	configuration	changes	(which	it	will	when	you	update	the
AMI	or	User	Data),	its	name	will	change,	and	therefore	the
ASG’s	name	will	change,	which	forces	Terraform	to	replace	the
ASG.

2.	 Set	the	create_before_destroy	parameter	of	the	ASG	to
true,	so	each	time	Terraform	tries	to	replace	it,	it	will	create	the
replacement	ASG	before	destroying	the	original.

3.	 Set	the	min_elb_capacity	parameter	of	the	ASG	to	the
min_size	of	the	cluster	so	that	Terraform	will	wait	for	at	least
that	many	servers	from	the	new	ASG	to	pass	health	checks	in	the
ALB	before	it’ll	start	destroying	the	original	ASG.

2

Here	is	what	the	updated	aws_autoscaling_group	resource	should
look	like	in	modules/services/webserver-cluster/main.tf:

resource	"aws_autoscaling_group"	"example"	{

		#	Explicitly	depend	on	the	launch	configuration's	name	

so	each	time	it's	replaced,

		#	this	ASG	is	also	replaced

		name	=	"${var.cluster_name}-

${aws_launch_configuration.example.name}"

		launch_configuration	=	

aws_launch_configuration.example.name

		vpc_zone_identifier		=	data.aws_subnet_ids.default.ids

		target_group_arns				=	[aws_lb_target_group.asg.arn]

		health_check_type				=	"ELB"

		min_size	=	var.min_size

		max_size	=	var.max_size

		#	Wait	for	at	least	this	many	instances	to	pass	health	

checks	before

		#	considering	the	ASG	deployment	complete

		min_elb_capacity	=	var.min_size

		#	When	replacing	this	ASG,	create	the	replacement	

first,	and	only	delete	the

		#	original	after

		lifecycle	{

				create_before_destroy	=	true

		}

		tag	{

				key																	=	"Name"

				value															=	var.cluster_name

				propagate_at_launch	=	true

		}

		dynamic	"tag"	{

				for_each	=	{

						for	key,	value	in	var.custom_tags:

						key	=>	upper(value)

						if	key	!=	"Name"

				}

				content	{

						key																	=	tag.key

						value															=	tag.value

						propagate_at_launch	=	true

				}

		}

}

If	you	rerun	the	plan	command,	you’ll	now	see	something	that	looks	like
this	(I’ve	omitted	some	of	the	output	for	clarity):

Terraform	will	perform	the	following	actions:

		#	

module.webserver_cluster.aws_autoscaling_group.example	

must	be	replaced

+/-	resource	"aws_autoscaling_group"	"example"	{

						~	id																								=	"webservers-stage-

terraform-20190516131456645800000001"	->	(known	after	

apply)

						~	launch_configuration						=	"terraform-

20190516131456645800000001"	->	(known	after	apply)

						~	name																						=	"webservers-stage-

terraform-20190516131456645800000001"	->	(known	after	

apply)	#	forces	replacement

								(...)

				}

		#	

module.webserver_cluster.aws_launch_configuration.example

	must	be	replaced

+/-	resource	"aws_launch_configuration"	"example"	{

						~	id																										=	"terraform-

20190516131456645800000001"	->	(known	after	apply)

								image_id																				=	"ami-

0c55b159cbfafe1f0"

								instance_type															=	"t2.micro"

						~	name																								=	"terraform-

20190516131456645800000001"	->	(known	after	apply)

						~	user_data																			=	

"bd7c0a6de4da4d6458e8b7447650b5616099dcb1"	->	

"4919a13b8fb5226801746cfa14af45918b3db793"	#	forces	

replacement

								(...)

				}

				(...)

Plan:	2	to	add,	2	to	change,	2	to	destroy.

The	key	thing	to	notice	is	that	the	aws_autoscaling_group	resource
now	says	“must	be	replaced”	next	to	its	name	parameter,	which	means
Terraform	will	replace	it	with	a	new	Auto	Scaling	Group	running	your
new	AMI	or	User	Data.	Run	the	apply	command	to	kick	off	the
deployment,	and	while	it	runs,	consider	how	the	process	works.

You	start	with	your	original	ASG	running,	say,	v1	of	your	code	(Figure	5-
2).

Figure	5-2.	Initially,	you	have	the	original	ASG	running	v1	of	your	code

You	make	an	update	to	some	aspect	of	the	launch	configuration,	such	as
switching	to	an	AMI	that	contains	v2	of	your	code,	and	run	the	apply
command.	This	forces	Terraform	to	start	deploying	a	new	ASG	with	v2	of

your	code	(Figure	5-3).

Figure	5-3.	Terraform	begins	deploying	the	new	ASG	with	v2	of	your	code

After	a	minute	or	two,	the	servers	in	the	new	ASG	have	booted,	connected

to	the	database,	registered	in	the	ALB,	and	started	to	pass	health	checks.
At	this	point,	both	the	v1	and	v2	versions	of	your	app	will	be	running
simultaneously,	and	which	one	users	see	depends	on	where	the	ALB
happens	to	route	them	(Figure	5-4).

Figure	5-4.	The	servers	in	the	new	ASG	boot	up,	connect	to	the	DB,	register	in	the	ALB,
and	start	serving	traffic

Once	min_elb_capacity	servers	from	the	v2	ASG	cluster	have
registered	in	the	ALB,	Terraform	will	begin	to	undeploy	the	old	ASG,	first
by	deregistering	the	servers	in	that	ASG	from	the	ALB,	and	then	by
shutting	them	down	(Figure	5-5).

Figure	5-5.	The	servers	in	the	old	ASG	begin	to	shut	down

After	a	minute	or	two,	the	old	ASG	will	be	gone,	and	you	will	be	left	with
just	v2	of	your	app	running	in	the	new	ASG	(Figure	5-6).

Figure	5-6.	Now,	only	the	new	ASG	remains,	which	is	running	v2	of	your	code

During	this	entire	process,	there	are	always	servers	running	and	handling
requests	from	the	ALB,	so	there	is	no	downtime.	Open	the	ALB	URL	in
your	browser	and	you	should	see	something	like	Figure	5-7.

Figure	5-7.	The	new	code	is	now	deployed

Success!	The	new	server	text	has	deployed.	As	a	fun	experiment,	make
another	change	to	the	server_text	parameter	(e.g.,	update	it	to	say
“foo	bar”),	and	run	the	apply	command.	In	a	separate	terminal	tab,	if
you’re	on	Linux/Unix/OS	X,	you	can	use	a	Bash	one-liner	to	run	curl	in
a	loop,	hitting	your	ALB	once	per	second,	and	allowing	you	to	see	the
zero-downtime	deployment	in	action:

$	while	true;	do	curl	http://<load_balancer_url>;	sleep	

1;	done

For	the	first	minute	or	so,	you	should	see	the	same	response	that	says
“New	server	text”.	Then,	you’ll	start	seeing	it	alternate	between	the	“New
server	text”	and	“foo	bar”.	This	means	the	new	Instances	have	registered
in	the	ALB	and	passed	health	checks.	After	another	minute,	the	“New
server	text”	will	disappear,	and	you’ll	only	see	“foo	bar”,	which	means	the
old	ASG	has	been	shut	down.	The	output	will	look	something	like	this	(for
clarity,	I’m	listing	only	the	contents	of	the	<h1>	tags):

New	server	text

New	server	text

New	server	text

New	server	text

New	server	text

New	server	text

foo	bar

New	server	text

foo	bar

New	server	text

foo	bar

New	server	text

foo	bar

New	server	text

foo	bar

New	server	text

foo	bar

foo	bar

foo	bar

foo	bar

foo	bar

foo	bar

As	an	added	bonus,	if	something	went	wrong	during	the	deployment,
Terraform	will	automatically	roll	back!	For	example,	if	there	was	a	bug	in
v2	of	your	app	and	it	failed	to	boot,	then	the	Instances	in	the	new	ASG
will	not	register	with	the	ALB.	Terraform	will	wait	up	to
wait_for_capacity_timeout	(default	is	10	minutes)	for
min_elb_capacity	servers	of	the	v2	ASG	to	register	in	the	ALB,
after	which	it	will	consider	the	deployment	a	failure,	delete	the	v2	ASG,
and	exit	with	an	error	(meanwhile,	v1	of	your	app	continues	to	run	just
fine	in	the	original	ASG).

Terraform	Gotchas
After	going	through	all	these	tips	and	tricks,	it’s	worth	taking	a	step	back
and	pointing	out	a	few	gotchas,	including	those	related	to	the	loop,	if-
statement,	and	deployment	techniques,	as	well	as	those	related	to	more

general	problems	that	affect	Terraform	as	a	whole:

Count	has	limitations

Zero-downtime	deployment	has	limitations

Valid	plans	can	fail

Refactoring	can	be	tricky

Eventual	consistency	is	consistent…eventually

Count	Has	Limitations
In	the	examples	in	this	chapter,	you	made	extensive	use	of	the	count
parameter	in	loops	and	if-statements.	This	works	well,	but	there	are	three
important	limitations	to	count	that	you	need	to	be	aware	of:

1.	 You	cannot	reference	any	resource	outputs	in	count.

2.	 You	cannot	use	count	within	a	module	configuration.

3.	 You	cannot	(easily)	change	count

Let’s	dig	into	these	one	at	a	time.

YOU	CANNOT	REFERENCE	ANY	RESOURCE	OUTPUTS	IN
COUNT.

Imagine	you	wanted	to	deploy	multiple	EC2	Instances,	and	for	some
reason	you	didn’t	want	to	use	an	Auto	Scaling	Group.	The	code	might
look	like	this:

resource	"aws_instance"	"example_1"	{

		count									=	3

		ami											=	"ami-0c55b159cbfafe1f0"

		instance_type	=	"t2.micro"

}

Since	count	is	being	set	to	a	hard-coded	value,	this	code	will	work
without	issues,	and	when	you	run	apply,	it	will	create	3	EC2	Instances.
Now,	what	if	you	wanted	to	deploy	one	EC2	Instance	per	availability	zone
(AZ)	in	the	current	AWS	region?	You	could	update	your	code	to	fetch	the
list	of	AZs	using	the	aws_availability_zones	data	source	and	use
the	count	parameter	and	array	lookups	to	“loop”	over	each	AZ	and
create	an	EC2	Instance	in	it:

resource	"aws_instance"	"example_2"	{

		count													=	

length(data.aws_availability_zones.all.names)

		availability_zone	=	

data.aws_availability_zones.all.names[count.index]

		ami															=	"ami-0c55b159cbfafe1f0"

		instance_type					=	"t2.micro"

}

data	"aws_availability_zones"	"all"	{}

Again,	this	code	will	work	just	fine,	as	count	can	reference	data	sources
without	problems.	However,	what	happens	if	the	number	of	instances	you
needed	to	create	depended	on	the	output	of	some	resource?	The	easiest
way	to	experiment	with	this	is	to	use	the	random_integer	resource,
which,	as	you	can	probably	guess	from	the	name,	returns	a	random
integer:

resource	"random_integer"	"num_instances"	{

		min	=	1

		max	=	3

}

This	code	generates	a	random	integer	between	1	and	3.	Let’s	see	what
happens	if	you	try	to	use	the	result	output	from	this	resource	in	the

count	parameter	of	your	aws_instance	resource:

resource	"aws_instance"	"example_3"	{

		count									=	random_integer.num_instances.result

		ami											=	"ami-0c55b159cbfafe1f0"

		instance_type	=	"t2.micro"

}

If	you	run	terraform	plan	on	this	code,	you’ll	get	the	following
error:

Error:	Invalid	count	argument

		on	main.tf	line	30,	in	resource	"aws_instance"	

"example_3":

		30:			count									=	

random_integer.num_instances.result

The	"count"	value	depends	on	resource	attributes	that	

cannot	be	determined

until	apply,	so	Terraform	cannot	predict	how	many	

instances	will	be	created.

To	work	around	this,	use	the	-target	argument	to	first	

apply	only	the

resources	that	the	count	depends	on.

The	cause	is	that	Terraform	requires	that	it	can	compute	the	count
parameter	during	the	plan	phase,	before	any	resources	are	created	or
modified.	That	means	count	can	reference	hard-coded	values,	variables,
data	sources,	and	even	lists	of	resources	(so	long	as	the	length	of	the	list
can	be	determined	during	plan),	but	not	computed	resource	outputs.

YOU	CANNOT	USE	COUNT	WITHIN	A	MODULE
CONFIGURATION.

Something	you	may	be	tempted	to	try	is	to	use	the	count	parameter

within	a	module	configuration:

module	"count_example"	{

		source	=	"../../../../modules/services/webserver-

cluster"

		count	=	3

		cluster_name		=	"terraform-up-and-running-example"

		server_port			=	8080

		instance_type	=	"t2.micro"

}

This	code	tries	to	use	the	count	parameter	on	a	module	to	create	3
copies	of	the	webserver-cluster	resources.	Or,	you	may	sometimes	be
tempted	to	try	to	set	count	to	0	on	a	module	as	a	way	to	optionally
include	it	or	not	based	on	some	boolean	condition.	While	the	code	looks
perfectly	reasonable,	if	you	run	terraform	plan,	you’ll	get	the
following	error:

Error:	Reserved	argument	name	in	module	block

		on	main.tf	line	13,	in	module	"count_example":

		13:			count	=	3

The	name	"count"	is	reserved	for	use	in	a	future	version	

of	Terraform.

Unfortunately,	as	of	Terraform	0.12,	using	count	on	module	is	not
supported.

YOU	CANNOT	(EASILY)	CHANGE	COUNT

Perhaps	the	biggest	gotcha	with	count	is	what	happens	when	you	try	to
change	the	value.	Let’s	say	you	had	a	Terraform	module	that	took	in	a	list

of	bucket	names	and	created	an	S3	bucket	for	each	one:

variable	"bucket_names"	{

		description	=	"Create	S3	buckets	with	these	names"

		type								=	list(string)

}

resource	"aws_s3_bucket"	"example"	{

		count		=	length(var.bucket_names)

		bucket	=	var.bucket_names[count.index]

}

output	"bucket_names"	{

		value	=	aws_s3_bucket.example[*].bucket

}

Let’s	say	you	deployed	this	initially	with	three	bucket	names,	“neo”,
“trinity”,	and	“morpheus”:

$	terraform	apply	-var	'bucket_names=["neo",	"trinity",	

"morpheus"]'

(...)

Apply	complete!	Resources:	3	added,	0	changed,	0	

destroyed.

Outputs:

bucket_names	=	[

		"neo",

		"trinity",

		"morpheus",

]

Now,	what	happens	if	you	wanted	to	remove	one	bucket	from	that	list?
Let’s	run	terraform	plan,	but	this	time,	with	just	“neo”	and
“morpheus”	as	the	bucket	names	(the	log	output	below	is	truncated	for

clarity):

$	terraform	plan	-var	'bucket_names=["neo",	"morpheus"]'

(...)

Terraform	will	perform	the	following	actions:

		#	aws_s3_bucket.example[1]	must	be	replaced

-/+	resource	"aws_s3_bucket"	"example"	{

						~	bucket	=	"trinity"	->	"morpheus"	#	forces	

replacement

						(...)

				}

		#	aws_s3_bucket.example[2]	will	be	destroyed

		-	resource	"aws_s3_bucket"	"example"	{

						-	bucket	=	"morpheus"	->	null

						(...)

				}

Plan:	1	to	add,	0	to	change,	2	to	destroy.

Wait	a	second,	that’s	probably	not	what	you	were	expecting!	The	plan
output	is	indicating	that	Terraform	wants	to	delete	two	buckets—both
trinity	and	morpheus—and	to	create	a	new	one	called	morpheus.	What’s
going	on?

When	you	use	the	count	parameter	on	a	resource,	that	resource	becomes
a	list	or	array	of	resources.	Unfortunately,	the	way	Terraform	identifies
each	resource	within	the	array	is	by	its	position	(index)	in	that	array.	That
is,	after	running	apply	the	first	time	with	three	bucket	names,
Terraform’s	internal	representation	of	these	buckets	looks	something	like
this:

aws_s3_bucket.example[0]:	neo

aws_s3_bucket.example[1]:	trinity

aws_s3_bucket.example[2]:	morpheus

When	you	remove	an	item	from	the	middle	of	an	array,	all	the	items	after
it	shift	back	by	one,	so	after	running	plan	with	just	two	bucket	names,
Terraform’s	internal	representation	will	look	something	like	this:

aws_s3_bucket.example[0]:	neo

aws_s3_bucket.example[1]:	morpheus

Notice	how	morpheus	has	moved	from	index	2	to	index	1.	Since
Terraform	sees	the	index	as	a	resource’s	identity,	to	Terraform,	this
change	roughly	translates	to	“rename	the	bucket	at	index	1	to	morpheus
and	delete	the	bucket	at	index	2.”	Actually,	since	AWS	doesn’t	allow	you
to	rename	buckets,	what	this	really	becomes	is,	“delete	the	buckets	at
index	1	and	2	and	create	a	new	bucket	called	morpheus	to	be	stored	at
index	1.”

In	short,	every	time	you	use	count	to	create	a	list	of	resources,	if	you
remove	an	item	from	the	middle	of	the	list,	Terraform	will	delete	every
resource	after	that	item	and	then	recreate	those	resources	again	from
scratch.	Ouch.	The	end	result,	of	course,	is	exactly	what	you	requested
(i.e.,	two	S3	buckets	named	morpheus	and	neo),	but	deleting	and
recreating	resources	is	probably	not	how	you	want	to	get	there!

The	only	solution	currently	available	is	to	use	the	terraform	state
mv	commands	to	update	the	indices	in	Terraform’s	state	before	running
terraform	apply.	The	state	mv	command	has	the	following
syntax:

terraform	state	mv	<ORIGINAL_REFERENCE>	<NEW_REFERENCE>

Where	ORIGINAL_REFERENCE	is	the	reference	expression	to	the
resource	as	it	is	now	and	NEW_REFERENCE	is	the	new	location	you	want
to	move	it	to.	Using	this	command,	you	can	move	the	bucket	called
“trinity”	from	index	1	to	the	end	of	the	list	at	index	3:

$	terraform	state	mv	aws_s3_bucket.example[1]	

aws_s3_bucket.example[3]

Move	"aws_s3_bucket.example[1]"	to	

"aws_s3_bucket.example[3]"

Successfully	moved	1	object(s).

Next,	you	can	use	the	command	once	more	to	move	the	bucket	named
“morpheus”	from	index	2	to	index	1:

$	terraform	state	mv	aws_s3_bucket.example[2]	

aws_s3_bucket.example[1]

Move	"aws_s3_bucket.example[2]"	to	

"aws_s3_bucket.example[1]"

Successfully	moved	1	object(s).

Now,	if	you	re-run	plan	with	two	bucket	names,	you	should	get	the
output	you’re	expecting	(the	log	output	below	is	truncated	for	clarity):

$	terraform	plan	-var	'bucket_names=["neo",	"morpheus"]'

(...)

Terraform	will	perform	the	following	actions:

		#	aws_s3_bucket.example[3]	will	be	destroyed

		-	resource	"aws_s3_bucket"	"example"	{

						-	bucket																						=	"trinity"	->	null

						(...)

				}

Plan:	0	to	add,	0	to	change,	1	to	destroy.

That	means	it’s	finally	safe	to	run	apply	and	be	confident	only	the
bucket	you	want	deleted	is	removed,	and	not	any	of	the	others.	Of	course,
if	you	had	a	list	of	20	items	and	you	needed	to	remove	the	5th	item,	you’d
have	to	run	16	terraform	state	mv	commands:	one	to	move	the	5th
item	to	the	back	of	the	list	and	15	more	to	shift	items	6	-	15	back	one	spot.
For	these	sorts	of	use	cases,	you’ll	likely	want	to	write	a	script	to	automate
this	process!

THE	FUTURE	OF	COUNT	AND	FOR_EACH

As	you	can	see,	while	count	is	very	useful,	it	has	a	number	of	painful
limitations.	Terraform	0.12	introduced	the	for_each	expression,	but	a
few	major	features	of	for_each	were	not	ready	at	the	time	of	the
release :

1.	 Support	for	using	for_each	on	resources	instead	of	count.

2.	 Support	for	using	for_each	within	module	configurations.

In	other	words,	in	future	versions	of	Terraform,	for_each	will	most
likely	replace	count	and	fix	all	of	the	limitations	described	in	this	section
—including	the	gotcha	with	deleting	items	from	the	middle	of	a	list,	as
for_each	can	loop	over	a	map,	using	the	keys	of	the	map	as	a	stable
identity	for	each	item,	rather	than	the	position	within	an	array.	Follow
issue	17179	for	progress.

Zero-Downtime	Deployment	has	Limitations
Using	create_before_destroy	with	an	ASG	is	a	great	technique
for	zero-downtime	deployment,	but	there	is	one	limitation:	it	doesn’t	work

3

https://github.com/hashicorp/terraform/issues/17179

with	auto	scaling	policies.	Or,	to	be	more	accurate,	it	resets	your	ASG	size
back	to	its	min_size	after	each	deployment,	which	can	be	a	problem	if
you	had	used	auto	scaling	policies	to	increase	the	number	of	running
servers.

For	example,	the	web	server	cluster	module	includes	a	couple	of
aws_autoscaling_schedule	resources	that	increase	the	number	of
servers	in	the	cluster	from	2	to	10	at	9	a.m.	If	you	ran	a	deployment	at,
say,	11	a.m.,	the	replacement	ASG	would	boot	up	with	only	2	servers,
rather	than	10,	and	would	stay	that	way	until	9	a.m.	the	next	day.

There	are	several	possible	workarounds,	including:

Change	the	recurrence	parameter	on	the
aws_autoscaling_schedule	from	0	9	*	*	*,	which
means	“run	at	9	a.m.”,	to	something	like	0-59	9-17	*	*	*,
which	means	“run	every	minute	from	9	a.m.	to	5	p.m.”	If	the
ASG	already	has	10	servers,	rerunning	this	auto	scaling	policy
will	have	no	effect,	which	is	just	fine;	and	if	the	ASG	was	just
deployed,	then	running	this	policy	ensures	that	the	ASG	won’t	be
around	for	more	than	a	minute	before	the	number	of	Instances	is
increased	to	10.	This	approach	is	a	bit	of	a	hack	and	the	big	jump
from	10	servers	to	2	servers	back	to	10	servers	may	still	cause
issues	for	your	users.

Create	a	custom	script	that	uses	the	AWS	API	to	figure	out	how
many	servers	are	running	in	the	ASG,	call	this	script	using	an
external	data	source,	and	set	the	desired_capacity
parameter	of	the	ASG	to	the	value	returned	by	this	script.	That
way,	whenever	a	new	ASG	is	launched,	it’ll	always	start	with	the
capacity	set	to	the	same	value	as	the	ASG	it	is	replacing.	The
downside	is	that	using	custom	scripts	makes	your	Terraform	code
less	portable	and	harder	to	maintain.

Ideally,	Terraform	would	have	first-class	support	for	zero-downtime
deployment,	but	as	of	May	2019,	the	HashiCorp	team	has	stated	that	they
have	no	short-term	plans	to	add	this	functionality	(see
https://github.com/hashicorp/terraform/issues/1552	for	details).

Valid	Plans	Can	Fail
Sometimes,	you	run	the	plan	command	and	it	shows	you	a	perfectly
valid-looking	plan,	but	when	you	run	apply,	you’ll	get	an	error.	For
example,	try	to	add	an	aws_iam_user	resource	with	the	exact	same
name	you	used	for	the	IAM	user	you	created	in	Chapter	2:

resource	"aws_iam_user"	"existing_user"	{

		#	You	should	change	this	to	the	username	of	an	IAM	

user	that	already

		#	exists	so	you	can	practice	using	the	terraform	

import	command

		name	=	"yevgeniy.brikman"

}

If	you	now	run	the	plan	command,	Terraform	will	show	you	a	plan	that
looks	reasonable:

Terraform	will	perform	the	following	actions:

		#	aws_iam_user.existing_user	will	be	created

		+	resource	"aws_iam_user"	"existing_user"	{

						+	arn											=	(known	after	apply)

						+	force_destroy	=	false

						+	id												=	(known	after	apply)

						+	name										=	"yevgeniy.brikman"

						+	path										=	"/"

						+	unique_id					=	(known	after	apply)

				}

Plan:	1	to	add,	0	to	change,	0	to	destroy.

https://github.com/hashicorp/terraform/issues/1552

If	you	run	the	apply	command,	you’ll	get	the	following	error:

Error:	Error	creating	IAM	User	yevgeniy.brikman:	

EntityAlreadyExists:	User	with	name	yevgeniy.brikman	

already	exists.

	 status	code:	409,	request	id:	71cd0053-77ef-

11e9-8831-41d1571eaa29

		on	main.tf	line	10,	in	resource	"aws_iam_user"	

"existing_user":

		10:	resource	"aws_iam_user"	"existing_user"	{

The	problem,	of	course,	is	that	an	IAM	user	with	that	name	already	exists.
This	can	happen	not	only	with	IAM	users,	but	almost	any	resource.
Perhaps	someone	created	that	resource	manually	or	via	CLI	commands,
but	either	way,	some	identifier	is	the	same,	and	that	leads	to	a	conflict.
There	are	many	variations	on	this	error,	and	Terraform	newbies	are	often
caught	offguard	by	them.

The	key	realization	is	that	terraform	plan	only	looks	at	resources	in
its	Terraform	state	file.	If	you	create	resources	out-of-band—such	as	by
manually	clicking	around	the	AWS	console—they	will	not	be	in
Terraform’s	state	file,	and	therefore,	Terraform	will	not	take	them	into
account	when	you	run	the	plan	command.	As	a	result,	a	valid-looking
plan	may	still	fail.

There	are	two	main	lessons	to	take	away	from	this:

Once	you	start	using	Terraform,	you	should	only	use	Terraform

Once	a	part	of	your	infrastructure	is	managed	by	Terraform,	you
should	never	make	changes	manually	to	it.	Otherwise,	you	not	only	set
yourself	up	for	weird	Terraform	errors,	but	you	also	void	many	of	the
benefits	of	using	infrastructure	as	code	in	the	first	place,	as	that	code

will	no	longer	be	an	accurate	representation	of	your	infrastructure.

If	you	have	existing	infrastructure,	use	the	import	command

If	you	created	infrastructure	before	you	started	using	Terraform,	you
can	use	the	terraform	import	command	to	add	that
infrastructure	to	Terraform’s	state	file,	so	Terraform	is	aware	of	and
can	manage	that	infrastructure.	The	import	command	takes	two
arguments.	The	first	argument	is	the	“address”	of	the	resource	in	your
Terraform	configuration	files.	This	makes	use	of	the	same	syntax	as
resource	references,	such	as	<PROVIDER>_<TYPE>.<NAME>	(e.g.,
aws_iam_user.existing_user).	The	second	argument	is	a
resource-specific	ID	that	identifies	the	resource	to	import.	For
example,	the	ID	for	an	aws_iam_user	resource	is	the	name	of	the
user	(e.g.,	yevgeniy.brikman)	and	the	ID	for	an	aws_instance	is
the	EC2	Instance	ID	(e.g.,	i-190e22e5).	The	documentation	for	each
resource	typically	specifies	how	to	import	it	at	the	bottom	of	the	page.

For	example,	here	is	the	import	command	you	can	use	to	sync	the
aws_iam_user	you	just	added	in	your	Terraform	configurations
with	the	IAM	user	you	created	back	in	Chapter	2	(obviously,	you
should	replace	“yevgeniy.brikman”	with	your	own	username	in	this
command):

$	terraform	import	aws_iam_user.existing_user	

yevgeniy.brikman

Terraform	will	use	the	AWS	API	to	find	your	IAM	user	and	create	an
association	in	its	state	file	between	that	user	and	the
aws_iam_user.existing_user	resource	in	your	Terraform
configurations.	From	then	on,	when	you	run	the	plan	command,
Terraform	will	know	that	IAM	user	already	exists	and	not	try	to	create
it	again.

Note	that	if	you	have	a	lot	of	existing	resources	that	you	want	to
import	into	Terraform,	writing	the	Terraform	code	for	them	from
scratch	and	importing	them	one	at	a	time	can	be	painful,	so	you	may

want	to	look	into	a	tool	such	as	Terraforming,	which	can	import	both
code	and	state	from	an	AWS	account	automatically.

Refactoring	Can	Be	Tricky
A	common	programming	practice	is	refactoring,	where	you	restructure	the
internal	details	of	an	existing	piece	of	code	without	changing	its	external
behavior.	The	goal	is	to	improve	the	readability,	maintainability,	and
general	hygiene	of	the	code.	Refactoring	is	an	essential	coding	practice
that	you	should	do	regularly.	However,	when	it	comes	to	Terraform,	or
any	infrastructure	as	code	tool,	you	have	to	be	careful	about	what	defines
the	“external	behavior”	of	a	piece	of	code,	or	you	will	run	into	unexpected
problems.

For	example,	a	common	refactoring	practice	is	to	rename	a	variable	or	a
function	to	give	it	a	clearer	name.	Many	IDEs	even	have	built-in	support
for	refactoring	and	can	rename	the	variable	or	function	for	you,
automatically,	across	the	entire	codebase.	While	such	a	renaming	is
something	you	might	do	without	thinking	twice	in	a	general-purpose
programming	language,	you	have	to	be	very	careful	in	how	you	do	it	in
Terraform,	or	it	could	lead	to	an	outage.

For	example,	the	webserver-cluster	module	has	an	input	variable
named	cluster_name:

variable	"cluster_name"	{

		description	=	"The	name	to	use	for	all	the	cluster	

resources"

		type								=	string

}

Perhaps	you	start	using	this	module	for	deploying	microservices,	and

http://terraforming.dtan4.net/

initially,	you	set	your	microservice’s	name	to	foo.	Later	on,	you	decide
you	want	to	rename	the	service	to	bar.	This	may	seem	like	a	trivial
change,	but	it	may	actually	cause	an	outage.

That’s	because	the	webserver-cluster	module	uses	the
cluster_name	variable	in	a	number	of	resources,	including	the	name
parameters	of	the	ALB	and	two	security	groups.	If	you	change	the	name
parameter	of	certain	resources,	Terraform	will	delete	the	old	version	of	the
resource	and	create	a	new	version	to	replace	it.	If	the	resource	you	are
deleting	happens	to	be	an	ALB,	there	will	be	nothing	to	route	traffic	to
your	web	server	cluster	until	the	new	ALB	boots	up.	Similarly,	if	the
resource	you	are	deleting	happens	to	be	a	security	group,	your	servers	will
reject	all	network	traffic	until	the	new	security	group	is	created.

Another	refactor	you	may	be	tempted	to	do	is	to	change	a	Terraform
identifier.	For	example,	consider	the	aws_security_group	resource
in	the	webserver-cluster	module:

resource	"aws_security_group"	"instance"	{

		name	=	"${var.cluster_name}-instance"

}

The	identifier	for	this	resource	is	called	instance.	Perhaps	you	were
doing	a	refactor	and	you	thought	it	would	be	clearer	to	change	this	name
to	cluster_instance.	What’s	the	result?	Yup,	you	guessed	it:
downtime.

Terraform	associates	each	resource	identifier	with	an	identifier	from	the
cloud	provider,	such	as	associating	an	iam_user	resource	with	an	AWS
IAM	User	ID	or	an	aws_instance	resource	with	an	AWS	EC2

Instance	ID.	If	you	change	the	resource	identifier,	such	as	changing	the
aws_security_group	identifier	from	instance	to
cluster_instance,	then	as	far	as	Terraform	knows,	you	deleted	the
old	resource	and	have	added	a	completely	new	one.	As	a	result,	if	you
apply	these	changes,	Terraform	will	delete	the	old	security	group	and
create	a	new	one,	and	in	the	time	period	in	between,	your	servers	will
reject	all	network	traffic.

There	are	four	main	lessons	you	should	take	away	from	this	discussion:

Always	use	the	plan	command

All	of	these	gotchas	can	be	caught	by	running	the	plan	command,
carefully	scanning	the	output,	and	noticing	that	Terraform	plans	to
delete	a	resource	that	you	probably	don’t	want	deleted.

Create	before	destroy

If	you	do	want	to	replace	a	resource,	then	think	carefully	about
whether	its	replacement	should	be	created	before	you	delete	the
original.	If	so,	then	you	may	be	able	to	use
create_before_destroy	to	make	that	happen.	Alternatively,
you	can	also	accomplish	the	same	effect	through	two	manual	steps:
first,	add	the	new	resource	to	your	configurations	and	run	the	apply
command;	second,	remove	the	old	resource	from	your	configurations
and	run	the	apply	command	again.

Changing	identifiers	requires	changing	state

If	you	want	to	change	the	identifier	associated	with	a	resource	(e.g.,
rename	an	aws_security_group	from	"instance"	to
"cluster_instance")	without	accidentally	deleting	and
recreating	that	resource,	you’ll	need	to	update	the	Terraform	state
accordingly.	You	should	never	update	Terraform	state	files	by	hand—
instead,	use	the	terraform	state	commands	to	do	it	for	you.	In
particular,	when	renaming	identifiers,	you’ll	need	to	run	the

terraform	state	mv	command	introduced	in	“You	cannot
(easily)	change	count”.	For	example,	if	you’re	renaming	an
aws_security_group	group	from	instance	to
cluster_instace,	you’ll	want	to	run:

terraform	state	mv	aws_security_group.instance	

aws_security_group.cluster_instance

This	tells	Terraform	that	the	state	that	used	to	be	associated	with
aws_security_group.instance	should	now	be	associated
with	aws_security_group.cluster_instance.	If	you
rename	an	identifier,	and	run	this	command,	you’ll	know	you	did	it
right	if	the	subsequent	terraform	plan	shows	no	changes.

Some	parameters	are	immutable

The	parameters	of	many	resources	are	immutable,	so	if	you	change
them,	Terraform	will	delete	the	old	resource	and	create	a	new	one	to
replace	it.	The	documentation	for	each	resource	often	specifies	what
happens	if	you	change	a	parameter,	so	RTFM.	And,	once	again,	make
sure	to	always	use	the	plan	command,	and	consider	whether	you
should	use	a	create-before-destroy	strategy.

Eventual	Consistency	Is	Consistent…Eventually
The	APIs	for	some	cloud	providers,	such	as	AWS,	are	asynchronous	and
eventually	consistent.	Asynchronous	means	the	API	may	send	a	response
immediately,	without	waiting	for	the	requested	action	to	complete.
Eventually	consistent	means	it	takes	time	for	a	change	to	propagate
throughout	the	entire	system,	so	for	some	period	of	time,	you	may	get
inconsistent	responses	depending	on	which	data	store	replica	happens	to
respond	to	your	API	calls.

For	example,	let’s	say	you	make	an	API	call	to	AWS	asking	it	to	create	an

EC2	Instance.	The	API	will	return	a	“success”	(i.e.,	201	Created)	response
more	or	less	instantly,	without	waiting	for	the	EC2	Instance	creation	to
complete.	If	you	tried	to	connect	to	that	EC2	Instance	immediately,	you’d
most	likely	fail	because	AWS	is	still	provisioning	it	or	the	Instance	hasn’t
booted	yet.	Moreover,	if	you	made	another	API	call	to	fetch	information
about	that	EC2	Instance,	you	may	get	an	error	in	return	(i.e.,	404	Not
Found).	That’s	because	the	information	about	that	EC2	Instance	may	still
be	propagating	throughout	AWS,	and	it’ll	take	a	few	seconds	before	it’s
available	everywhere.

In	short,	whenever	you	use	an	asynchronous	and	eventually	consistent
API,	you	are	supposed	to	wait	and	retry	for	a	while	until	that	action	has
completed	and	propagated.	Unfortunately,	the	AWS	SDK	does	not
provide	good	tools	for	doing	this,	and	Terraform	used	to	be	plagued	with	a
number	of	bugs	similar	to	#6813:

$	terraform	apply

aws_subnet.private-persistence.2:	

InvalidSubnetID.NotFound:

The	subnet	ID	'subnet-xxxxxxx'	does	not	exist

That	is,	you	create	a	resource	(e.g.,	a	subnet),	and	then	try	to	look	up	some
data	about	that	resource	(e.g.,	the	ID	of	the	newly	created	subnet),	and
Terraform	can’t	find	it.	Most	of	these	bugs	(including	#6813)	have	been
fixed,	but	they	still	crop	up	from	time	to	time,	especially	when	Terraform
adds	support	for	a	new	type	of	resource.	These	bugs	are	annoying,	but
fortunately,	most	of	them	are	harmless.	If	you	just	rerun	terraform
apply,	everything	will	work	fine,	since	by	the	time	you	rerun	it,	the
information	has	propagated	throughout	the	system.

https://github.com/hashicorp/terraform/issues/6813

Conclusion
Although	Terraform	is	a	declarative	language,	it	includes	a	large	number
of	tools,	such	as	variables	and	modules,	which	you	saw	in	Chapter	4,	and
count,	for_each,	for,	create_before_destroy,	and	built-in
functions,	which	you	saw	in	this	chapter,	that	give	the	language	a
surprising	amount	of	flexibility	and	expressive	power.	There	are	many
permutations	of	the	if-statement	tricks	shown	in	this	chapter,	so	spend
some	time	browsing	the	functions	documentation	and	let	your	inner	hacker
go	wild.	OK,	maybe	not	too	wild,	as	someone	still	has	to	maintain	your
code,	but	just	wild	enough	that	you	can	create	clean,	beautiful	APIs	for
your	users.

These	users	will	be	the	focus	of	the	next	chapter,	which	describes	how	to
use	Terraform	as	a	team.	This	includes	a	discussion	of	what	workflows
you	can	use,	how	to	manage	environments,	how	to	test	your	Terraform
configurations,	and	more.

1
	You	can	learn	about	CPU	credits	here:	http://amzn.to/2lTuvs5.

2
	Credit	for	this	technique	goes	to	Paul	Hinze.

3
	https://www.hashicorp.com/blog/hashicorp-terraform-0-12-preview-for-and-for-
each

https://www.terraform.io/docs/configuration/functions.html
http://amzn.to/2lTuvs5
http://bit.ly/2lksQgv
https://www.hashicorp.com/blog/hashicorp-terraform-0-12-preview-for-and-for-each

	Cover
	1. Why Terraform
	2. Getting Started with Terraform
	3. How to Manage Terraform State
	4. How to Create Reusable Infrastructure with Terraform Modules
	5. Terraform Tips and Tricks: Loops, If-Statements, Deployment, and Gotchas

